

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

THE FORENSIC POTENTIAL OF FLASH MEMORY

by

James E. Regan

September 2009

 Thesis Advisor: Simson Garfinkel
 Second Reader: George Dinolt

Approved for public release; distribution is unlimited

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE The Forensic Potential of Flash Memory

6. AUTHOR(S) James E. Regan
5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis explores the forensic opportunities afforded by flash memory. It starts with a discussion of flash

storage starting with the physics of flash devices, the development of flash translation layers (which allow flash
devices to be used with unmodified legacy operating systems), and flash file systems (which provide for better
utilization of flash storage at a somewhat higher cost). Then this thesis provides a comprehension survey of the
relevant academic literature and evaluates the work that others have done in the field of flash data recovery. It
provides a theory of circumstances when residual data may exist on flash memory through the intentional deletion and
overwrite of previously saved data, based upon a thorough patent review and freely available documentation. It
clearly documents the steps of configuring a Linux kernel to use the YAFFS2 (Yet Another Flash File System used in
Android) and the JFFS2 (the Journaling Flash File System used on the One Laptop per Child Program) flash file
systems. It then conducts experiments to confirm or deny these theories, with a focus on the recovery of data and
other evidence that overwritten and deleted data once existed. Finally, this thesis makes recommendations for further
research.

15. NUMBER OF
PAGES

99

14. SUBJECT TERMS Flash Memory, Forensics, Flash File Systems, Flash Transition Layer,
YAFFS, JFFS2

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

THE FORENSIC POTENTIAL OF FLASH MEMORY

James E. Regan
Captain, United States Marine Corps

B.A., Franklin and Marshall College, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2009

Author: James E. Regan

Approved by: Simson Garfinkel
Thesis Advisor

George Dinolt
Second Reader

Dr. Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis explores the forensic opportunities afforded by flash memory. It starts

with a discussion of flash storage, starting with the physics of flash devices, the

development of flash translation layers (which allow flash devices to be used with

unmodified legacy operating systems), and flash file systems (which provide for better

utilization of flash storage at a somewhat higher cost). Then this thesis provides a

comprehension survey of the relevant academic literature and evaluates the work that

others have done in the field of flash data recovery. It provides a theory of circumstances

when residual data may exist on flash memory through the intentional deletion and

overwrite of previously saved data, based upon a thorough patent review and freely

available documentation. It clearly documents the steps of configuring a Linux kernel to

use the YAFFS2 (Yet Another Flash File System used in Android) and the JFFS2 (the

Journaling Flash File System used on the One Laptop per Child Program) flash file

systems. It then conducts experiments to confirm or deny these theories, with a focus on

the recovery of data and other evidence that overwritten and deleted data once existed.

Finally, this thesis makes recommendations for further research.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. THEORY ..2
C. FLASH TRANSLATION LAYER...3
D. FLASH FILE SYSTEMS ..4

II. BACKGROUND AND RELATED WORK ..7
A. BACKGROUND ..7

1. Physics of Flash Memory...7
2. History and Trends of Flash ...9
3. NOR Versus NAND Flash ...11
4. Flash Endurance and Limitations ..11
5. Flash Memory Logical Structure ...12
6. Flash Specific Operations..13
7. Access via the Joint Test Action Group (JTAG) Interface14
8. Wear Level Approach with the Flash Translation Layer16
9. Wear Level Approach with Flash File Systems19

B. PRIOR WORK...22
1. Introduction..22
2. Physical Acquisition...24
3. Logical Acquisition ..26
4. Remnant Data...27
5. Other ...31

III. OPPORTUNITES FOR RECOVERY...33
A. RESIDUAL DATA AS A RESULT OF OUT OF PLACE WRITES33

1. Background ..33
2. FTL..33
3. YAFFS...35
4. JFFS ..36
5. JFFS2 ..37

B. EFFECTS OF FRAGMENTATION ON DATA RECOVERY38

IV. RECOVERY EXPERIMENTS ..41
A. PREPARATION OF SYSTEM ..41
B. EXPERIMENTS ..47

1. Test the Ability to Write and Read from a Simulated NAND
Device ..48

2. Effects of Renaming a File ..51
3. Effects of Deleting a File..55
4. Effects of a Partial Overwrite ...58
5. Effects of a Complete Overwrite ..61
6. Is One File Big Enough to Sanitize?...64
7. Background Processes Effect on Forensic Integrity65

 viii

8. The Effects of Heavy Usage on Fragmentation...............................66

V. CONCLUSIONS AND FUTURE WORK...69
A. CONCLUSIONS ..69
B. FUTURE WORK...70

LIST OF REFERENCES..73

APPENDIX...77
A. PYTHON CODE FOR EXPERIMENTS ..77

1. YAFFS Experiment 1 ..77
2. YAFFS Experiment 2 ..77
3. YAFFS Experiment 3 ..77
4. YAFFS Experiment 4 ..78
5. YAFFS Experiment 5 ..78
6. YAFFS Experiment 6 ..78
7. YAFFS Experiment 7 ..79
8. YAFFS Experiment 8.1 ...80
9. YAFFS Experiment 8.2 ...80
10. JFFS2 Experiment 1 ..80
11. JFFS2 Experiment 2 ..81
12. JFFS2 Experiment 3 ..81
13. JFFS2 Experiment 4 ..81
14. JFFS2 Experiment 5 ..82
15. JFFS2 Experiment 6 ..82
16. JFFS2 Experiment 7 ..83
17. JFFS2 Experiment 8.1 ...83
18. JFFS2 Experiment 8.2 ...83

B. LINUX IMAGE README...84

INITIAL DISTRIBUTION LIST ...85

 ix

LIST OF FIGURES

Figure 1. Flash Cell Erased State (From: [4]) ...8
Figure 2. Flash Cell Programmed State (From: [4]) ...8
Figure 3. Price/GB Memory Trend (From: [9] with permission)....................................10
Figure 4. Example of Spare Area Detail (From: [14]) ..13
Figure 5. JTAG Ports on a Flash Embedded Device (From: [13] with permission).......16
Figure 6. FTL Mapping Structures (From: [2])...18
Figure 7. Target for Recovery in the FTL...34
Figure 8. Target for Recovery in YAFFS..36
Figure 9. Target for Recovery in JFFS..37
Figure 10. Kernel Configuration Step 9 ..43
Figure 11. Kernel Configuration Step 10 ..44
Figure 12. Kernel Configuration Step 11 ..45
Figure 13. Kernel Configuration Step 14 ..46
Figure 14. Kernel Configuration Step 15 ..46
Figure 15. YAFFS2 Recovered File..50
Figure 16. JFFS2 Recovered File ..51
Figure 17. YAFFS2 Effects of Rename Operation ...53
Figure 18. JFFS2 Effects of Rename Operation..54
Figure 19. YAFFS2 Effects of a Delete ..56
Figure 20. JFFS2 Effects of a Delete ..57
Figure 21. YAFFS2 Effects of a Partial Overwrite ...59
Figure 22. JFFS2 Effects of a Partial Overwrite ...60
Figure 23. YAFFS2 Effects of a Complete Overwrite..62
Figure 24. JFFS2 Effects of a Complete Overwrite ..63

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. YAFFS Spare Area Detail (From: [20]) ..20
Table 2. YAFFS Tags Usage (From: [20]) ..20
Table 3. Prior Work Articles..23

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

Small devices using flash-based storage are routinely encountered during military,

law enforcement and intelligence operations. Today, these devices are largely analyzed

using tools designed to analyze hard drives. These tools look for data at the logical block

level. They can find data inadvertently left on the device either because no attempt was

made to delete it or the attempt was not successful. Flash devices offer additional

opportunities for data recovery, because there is a physical layer below the logical layer

that can be exploited to benefit the forensic investigator.

This thesis explores the forensic opportunities afforded by flash memory. It

begins with a discussion of flash storage starting with the physics of flash devices, the

development of Flash Translation Layers (FTLs), which allow flash devices to be used

with unmodified legacy operating systems, and flash file systems (which provide for

better utilization of flash storage at a somewhat higher cost). The thesis then makes the

following contributions to the field of computer forensics:

 The first comprehensive survey of the academic literature regarding flash
forensics.

 A thorough review of FTL, flash file systems and flash memory patents
with respect to the opportunities for recovering residual data.

 Clearly documenting the steps for configuring Linux to use YAFFS and
JFFS2 with a flash simulator.

 Performing experiments that used a flash simulator and file system
operations to determine residual data left by YAFFS and JFFS2.

 Discussing the possibilities for recovering residual data from a FTL.

 Recommendations for further research.

These techniques further developed the understanding of how residual data is left on flash

memory devices and how to recover it.

 2

B. THEORY

Flash is a block structured storage system that is increasingly being used to

supplement or replace traditional magnetic storage in many applications. Flash is also

widely used on portable devices such as cellular phones. But flash storage is different

from magnetic storage in two important ways. First, flash storage blocks must be erased

before they can be written, and the erasure size is typically much larger than the block or

sector size. Second, whereas the sectors on a hard drive can be rewritten hundreds of

millions of times, flash blocks can typically only be rewritten a few thousand times.

The physical limitations of flash media are overcome with two technical

approaches: out of place writes when data is changed, and wear leveling that swaps data

from one physical location to another in order to even the usage of erase operations

among the flash storage blocks. This required functionality offers more opportunities for

a forensic examiner to recover residual data than are afforded on a typical hard disk drive.

Flash media used in SD cards and in USB thumb drives implement these

requirements through the flash transition layer (FTL), an indirection layer that allows a

traditional operating system to read and write individual logical sectors on the flash, but

which translates these operations to the out-of-place writes and wear-leveling necessary

for proper operation. As a result of the FTL, the act of overwriting every logical sector of

a flash storage device may leave observable evidence at the physical layer that the flash

media has been previously used. This is because overwriting blocks at the logical level

will result in changes to the internal FTL data structures that cannot be controlled through

the traditional APIs used to control block devices. It is also possible that residual user

data may be recovered through an API that allows access to the physical flash device,

because the act of overwriting specific logical data does not translate into the erasure and

overwriting of the corresponding physical blocks.

The potential for forensic recovery with flash is therefore greater than with a hard

disk drive. Users of hard drives have full access to the physical layer: the act of wiping

the entire hard drive and reinstalling a new operating system leaves little or no trace that

the device had been previously used. But, if a user were to reinstall a new operating

 3

system on a flash device in attempt to cover previous use, the data structures are written

to new physical locations, possibly leaving older ones in place, unmapped to the logical

layer. These unmapped, older blocks may contain previous operating system data or user

files that will provide a signature different from a flash device that was used just once.

In addition, a flash device used for the first time will most likely result in very

little fragmentation at the physical layer. On a clean device, data is written sequentially

until the media fills. There is very little wear leveling if the media has not been used

much. But, if the flash device has been used extensively in an attempt to wipe at the

logical layer only, the reinstallation of an operating system will result in a greater level of

physical fragmentation as the media fills with out of place writes and the FTL or flash file

system conducts wear leveling procedures.

This theory is also applicable for use in the potential recovery of previous user

files that a user attempts to wipe. But, as the user files grow in size and the use of the

flash media increases, the files will become more fragmented at the physical layer,

leaving data recovery operations much more difficult. Smaller files, particularly the size

of a physical flash page or smaller (approximately 512KB), should provide the greatest

potential for recovery. The ideal targets for recovery would be small text documents, cell

phone message log entries, contact information, small images and file system data

structures that contain metadata such as inodes and FATs. Files that are likely to become

fragmented and harder to recover include large image files, video files and sound format

files such as .mp3 and .wav.

C. FLASH TRANSLATION LAYER

There are two approaches to address the limitations of flash memory caused by

write endurance, out of place writes, erase block sizes and NAND flash’s non-random

addressability. The first is the Flash Translation Layer specification. The FTL allows

any standard file system to utilize a flash memory device by emulating a block device.

The FTL stands between the host operating system and the flash device and translates the

standard block commands from the host. It will present memory from the flash in sectors

and blocks, much like the standards used by a hard disk drive interacting with a FAT file

 4

system, while hiding the intricacies of the flash device, such as block erasing and wear

leveling. It does this by mapping the block and sector addresses of the standard file

system to physical addresses. So, as data is physically moved to different locations in

order to implement wear leveling and out-of-band writes, the FTL presents the data to the

host operating system as if the data is written to a static location. The FTL may be

implemented on a hardware controller that exists on the chip itself working as the

intermediary between a host OS utilizing a standard file system such as FAT or it may

exist as part of the operating system. A common example of an implementation is

SanDisk’s mobile flash drive, which utilizes an FTL programmed on an embedded

controller within the SanDisk SD memory cards.

D. FLASH FILE SYSTEMS

The second approach is to design a file system that implements wear leveling and

out-of-band writes itself. Applications such as the open source YAFFS (Yet Another

Flash File System) and JFFS (Journaling Flash File System) and the proprietary

Microsoft Flash File System use this approach. Instead of using the traditional FAT or

inodes, these systems create their own data structures on the flash device. These data

structures are loaded into the host computer’s RAM when the flash file system is

mounted. These structures are used by the file system to implement wear leveling, bad

block management, block reclamation during block erasure and pointers to extents that

will recreate files requested by the host. Typically, the structure will utilize status flags

that indicate the state of the physical pages and blocks and erase counts to even wear. A

key distinction between FTLs and flash file systems is that the operating system, through

the flash file system, will have direct access to the spare area to store metadata and file

structures, whereas the FTL does not give the OS and utilized file systems that level of

access. Flash file systems are typically used in embedded applications where the flash

storage is not removable, such as the YAFFS implementation in the Android operating

 5

system for mobile phones [1].1 Unlike the FTL utilizing a FAT, flash file systems are

not as portable to other systems; specific drivers will need to be loaded onto the host for

interaction.

The potential for forensic data recovery will depend upon the specific

implementation of the wear leveling mechanism. Each specification will handle wear

leveling differently and will perform garbage collection at different intervals. One

solution will not fit all, and each system needs to be studied carefully to maximize data

recovery.

1 The T-Mobile G1 phone, which uses the Android operating system, actually uses both a flash file

system and an FTL. YAFFS is used for the phone’s internal flash storage and the Microsoft FAT32 file
system with an FTL to store data on the phone’s micro SD card.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. BACKGROUND AND RELATED WORK

A. BACKGROUND

1. Physics of Flash Memory

Flash memory is a type of Electronically Erased Programmable Read Only

Memory (EEPROM). Flash can be in one of two states—erased and non-erased. Flash is

nonvolatile, in that it retains its content after the removal of power. Flash memory cells

are made up of floating gate transistors to store information, where the gate traps an

electron. The existence of a charge indicates a zero and no charge represents a one.

Write operations can only program a one to a zero. In order to clear a bit (change the

value of a bit to one), an entire block of memory must be erased.

A flash cell is made up of a floating gate, which is a transistor that is completely

surrounded by insulating material and is governed by a control gate. A process known as

channel hot electron injection causes an electron to gain enough energy to pass through

the isolating material. The electrically isolating property allows the floating gate

transistor to then trap the electron. The electrical charge that is applied to the gate comes

from the bit line at the drain side. A positive charge, the absence of a trapped electron, is

associated with the logical one while a negative charge, electrons trapped in the floating

gate, is associated with the logical zero. The only connection the floating gate has to the

row, or word line, is through the control gate. The trapped electrons give the floating

gate a negative charge and work as a barrier between the floating gate and the control

gate. When the charge passing through the gate is measured and it is above a specified

threshold, consistent with no electrons trapped within the floating gate, a one is indicated

on read. Conversely, when electrons are trapped, the charge passing through the gate

should drop below the threshold and a zero is read. The insulating material is what gives

the flash its non-volatile property; the electron is trapped without the need of a constant

refresh. Programming NAND cells must be done at 512 byte page intervals, while NOR

cells can be programmed on a word basis [3].

Figure 1. Flash Cell Erased State (From: [4])

Erasing a flash cell utilizes the Fowler–Nordheim tunneling process to remove the

electrons from the floating gate. A high voltage of opposite polarity is applied to the

floating gate, forcing the trapped electrons through the insulating material to the surface.

The negatively charging barrier is thus eliminated and the charge passing through the

gate will rise above the threshold [3].

Figure 2. Flash Cell Programmed State (From: [4])

 8

 9

Flash cells can be Single Level Cells (SLC) that hold one bit per cell or Multi

Level Cells (MLC) that can store more than one bit per cell. Storing more than one bit

per cell is accomplished by storing multiple possible levels of electrical charge and using

multiple threshold voltage levels. Typically, MLC may represent four different states [5].

The tradeoff in more capacity of the MLC flash is increased read/write latency and a

shorter lifetime [6]. The write latency is due to a more sophisticated programming

technique to store the precise charge needed to achieve the threshold voltage distribution.

Similarly, the read operation is longer because it takes longer to distinguish between the

four possible charges stored in the cell. The lifetime of MLC devices decreases due to

the inability to distinguish between the four different states, compared to only two in SLC

[7].

2. History and Trends of Flash

The patent for NOR flash memory was filed by Fujio Masuoka in 1981. Masuoka

was working for Toshiba in Japan and was able to produce the first chip in 1984. By

1987, Masuoka developed the first NAND flash chip. NOR flash was developed to store

smaller amounts of data, have low access latencies and be able to execute in place,

avoiding having to load software into RAM. It was ideal for BIOS and firmware,

information that rarely needs to be updated. But NAND was developed with the idea to

replace the hard disk drive market as long term storage. The first NAND devices went on

the market in 1990 [8].

With its small size, low power consumption, storage density, shock resistance and

low cost, compared to other EPROM, NAND flash memory is the choice when solid state

non-volatile memory is needed, especially in mobile devices. As demand for personal

devices such as digital cameras, cell phones, portable video game consoles and music

players have grown, so has demand for flash memory. The oldest applications date back

to the mid 1990s and included SanDisk’s CompactFlash, Toshiba’s SmartMedia, Siemen

AG/SanDisks’s MultiMediaCard and the physically larger Memory Stick introduced by

Sony. By 2000, Panasonic, SanDisk, Toshiba, Kodak developed Secure Digital cards and

these devices have been the dominant removable format of flash memory in portable

devices. But SD cards have not penetrated the embedded system market because of their

lack of compatibility with IDE/ATA; CompactFlash has had better market penetration.

Various manufacturers have also produced USB flash drives since 2001.

Memory chip capacity roughly follows Moore’s law because they share the same

equipment and techniques used in production of integrated circuits. Flash prices

consistently dropped 30 – 40% from the late 1990s through 2003, but NAND flash has

accelerated to a 50% decline driven by increased supplies. Prices were approximately

$10 per gigabyte in 2007 and have dropped to approximately $2 per gigabyte in 2009 [9].

Figure 3. Price/GB Memory Trend (From: [9] with permission)

 10

 11

3. NOR Versus NAND Flash

There are two types of cell arrays in flash memory, NAND and NOR. They differ

in how the memory arrays are connected and how memory is addressed to perform a read

or write operation. The cells in a NOR flash device are connected in parallel, allowing

each cell to be read and programmed individually. This connection resembles a NOR

gate. Read addressability is much like Random Access Memory: NOR flash can be read

byte by byte in constant time. In NAND flash, the cells are connected in series, much

like a NAND gate, which prevents an individual cell from being read or written to.

Therefore, one complete interconnected series may be read or written. NAND flash uses

a shared bus for addresses and data transfers, while NOR uses a separate BUS for

addressing, memory write and read operations [3].

The tradeoff from lack of cell level addressability in NAND flash is increased

density. NAND flash technology devices are more economical per bit and can store more

information in a smaller area than NOR flash devices. NOR flash was invented as an

economical replacement for ROM, while the increased capacity of NAND was

envisioned as competition for Hard Disk Drives as a secondary storage device. One other

advantage NAND has over NOR is a faster erase time. This improvement is recognized

through a smaller erase block. The typical erase block size in NOR ranges from 64 to

128 Kbytes, while the typical NAND erase block size ranges from 8 to 32 Kbytes. The

smaller NAND block size will speed an erase operation from 5 seconds in a NOR device

to 4 milliseconds in a NAND device [10].

Because of its serial nature, NAND flash has a multiplexed input/output bus that

carries both address information and data. The bus is typically 8 or 16 bits wide and is

too small to carry an address in one cycle. Data is accessed by the address of the data

first applied in three to five cycles. Once the address is loaded, the same input/output line

is used to transfer the data residing at that address [11].

4. Flash Endurance and Limitations

Flash has a limit to the number of erase-write cycles. The upper limit varies

greatly from sources, but the range is typically 10^4 to 10^6 writes and the limitation is

 12

improving with time. This limit is also referred to as write endurance. SLC flash

typically has a higher write endurance than MLC and NOR generally has a better write

endurance than NAND flash [2].

Manufacturers may implement a wear leveling scheme in order to even out the

wear across all flash cells and increase the effective lifetime of the capacity of the device.

Wear leveling will not improve the lifetime of any individual cell; rather, it spreads write

operations across all cells, so no one particular cell wears out before others, thus reducing

the capacity of the device.

Once bits in a block can no longer be erased and permanently hold a value of

zero, the block is marked as bad. NAND flash devices are shipped with bad blocks

already existing on the device. Typically, 2% of a NAND flash device will contain bad

blocks when shipped [11].

In addition to write endurance, there is an upper limit to how long flash memory

can hold data. The quality of the voltage level will deteriorate over time. Most data

sheets for commercially available flash indicate an upper limit range of 10 to 100 years

before data is lost [12].

5. Flash Memory Logical Structure

The logical structure of flash memory from least to greatest granularity is erase

zones, blocks and pages. Erase zones usually consist of 256 to 1024 blocks. Not every

device uses the concept of erase zones. One or more erase blocks may be organized into

an erase zone. A logical concept, zones can be used to manage bad blocks. As blocks go

bad, data may be swapped into good blocks from the bad blocks within the same zone.

The flash block is the lowest unit that may be erased. A block may consist of 32,

64 or 128 flash pages. The total number of blocks per flash device varies upon the total

storage capacity. Flash pages are usually a multiple of 512 bytes of usable storage area

(excluding spare area) and typical sizes include 512 bytes, 2K bytes or 4K bytes. The

flash page is the lowest addressable unit in NAND [11].

Flash pages are further comprised of usable area and spare area. The usable area

is where user data is stored and the spare area is used for flash metadata. The spare area

size can range from 8 to 64 bytes, depending on the size of the page. The metadata will

contain information regarding the page number, which erase block the page belongs, and

will be used to map the physical location of the data back to the logical structures of the

flash transition layer. Other information held within the spare area could include a dirty

bit, which will mark a particular page as outdated, indicating that the information has

changed and that the page no longer contains the most current data and ECC data. It may

also contain a bit that marks the block as ready to be erased and if the block has gone bad

(no longer usable because, for example, it has reached its end of lifetime due to the

number of erase operations performed). The particular structure and information

contained within the spare area is not standardized and is manufacturer specific. This

information will be used by the wear leveling algorithms and as such will be proprietary.

The spare area may be used to describe an individual page or they may be aggregated to

describe an entire erase block [11].

Figure 4. Example of Spare Area Detail (From: [14])

6. Flash Specific Operations

A flash page may be individually read and programmed (bits changed from one to

zero), but an individual page cannot be erased (set to one). For example, a byte may be

programmed from 1111111 to 11111100. Further possible changes may be 11111000 or

 13

 14

11011000, but 11111101 is not possible, as it changes the rightmost bit from a zero to a

one. Flash allows random access reads and programs, but not rewrites and erasure

operations [2].

There are three possible operations that may be performed on a flash memory

device. They are read a page, program a page, and erase a block. The read operation is

the fastest of the three and typically takes 25 microseconds for NAND flash and 20

nanoseconds for NOR. A program operation will typically take 250 microseconds for

NAND and 10 microseconds for NOR. The erase block operation is the longest and may

take as long as 3 milliseconds for NAND and up to 5 seconds in NOR [5] [12].

To maximize the lifespan of the memory cells, the manufacturers of the flash

implement a wear leveling algorithm. In contrast, a magnetic disk in an overwrite

operation will reuse the same sector that the data was originally stored upon. So as data

is written, deleted and rewritten, the early sectors on the disk will be used much more

than the later. Wear leveling is not as large a concern to the manufacturers of magnetic

storage disks, because the ceiling of the lifetime of the hard drive is not dictated by the

lifetime of the sector, but rather by the mechanical device needed to write and read data

off the disk. But if the operations used for a magnetic hard disk drive were used on flash,

blocks used to hold file system metadata (which change often) would wear out and go

bad. This would decrease the overall effective lifetime of the device [14].

The algorithms used for wear leveling spread the write and erase operations over

the entire flash device, so that wear occurs evenly. Further, when data is changed, the

same page is not reused, but the updated data is written to a new physical page, that is set

to all ones and the old page will be marked for erase. This is referred to as an out-of-

place write. In order to maximize power and wear leveling efficiency, a block is not

erased immediately but rather a group of blocks will be erased when space is needed [14].

7. Access via the Joint Test Action Group (JTAG) Interface

Obtaining a logical acquisition will not create a complete picture of all the data

stored on a flash device. A complete image of the physical layer will produce all stored

data. One non-invasive method of obtaining physical access to flash memory chips is

 15

through the Joint Test Action Group (JTAG) connection pads [13], also known as the

“Standard Test Access Port and Boundary-Scan Architecture.” A JTAG access port is

normally used to test selected printed circuit boards during the manufacture process and

to debug embedded software, but can also be used to obtain a physical layer image of

flash memory chips, indirectly through the circuit board. JTAG access ports do not

physically exist on flash memory chips, but are built into the circuit boards that are

connected to flash memory chips.

The JTAG approach is not without its problems. The location of JTAG ports are

not always published by the manufacturer of embedded devices and the ports do not exist

on all devices [13]. Some devices that have JTAG ports do not give the interface

unrestricted access to the flash memory map. Finally, the JTAG ports may be disabled

after production prior to distribution to the end user.

Figure 5. JTAG Ports on a Flash Embedded Device (From: [13] with permission)

8. Wear Level Approach with the Flash Translation Layer

The purpose of the FTL is to present flash memory to a file system as if it were a

rewriteable block device, such as a magnetic disk, while the device driver, or controller

hardware, addresses the peculiarities of flash memory that the higher level software is not

concerned with, such as wear leveling, block reclamation and crash recovery. The basic

idea behind the wear leveling technique is to map the virtual block number presented by

the host operating system to a physical flash page on the memory chip. There are no

known open source FTL implementations.

 16

 17

FTLs are complex because the map is stored on the flash device itself, with only a

small portion of the map in memory. FTLs must track which logical blocks are updated

most frequently in order to minimize the cost of updating the map when the physical

location of the data has changed. Different FTLs have been implemented by different

manufacturers. There is no need for compatibility between FTLs, because most exist in

standalone storage devices such as USB thumb drives, SD cards and solid state storage

devices [2]: compatibility is provided at the logical layer. This lack of compatibility

would surely complicate any forensic analysis that took place beneath the FTL at the

physical level.

Intel’s FTL implementation consists of two mappings: a virtual block number to a

logical block and page number map and then a logical block to a physical erase block

map. Most of the virtual block to logical block map is stored on the flash itself, except

for the first few virtual block entries, which change often in a FAT file system. The

logical block numbering scheme minimizes map changes, for when valid pages are

rewritten to a new physical block, the page offset into the new physical block remains the

same and the logical block number need not change. On the flash, there is also a

secondary virtual to logical map. This secondary map is used for efficiency, for changes

to the map can be written to the same physical block, delaying a block reclamation

operation, while the primary map entry is marked as obsolete [15].

The second map is a much smaller logical block to physical block mapping that is

loaded into RAM when the flash memory is mounted. This mapping changes often, but

the cost is much less as it resides in RAM [15].

Figure 6. FTL Mapping Structures (From: [2])

Other FTLs include the NAND FTL, which uses one of two different mapping

schemes, depending on whether the flash has spare area. The mapping scheme associates

a chain of physical blocks with a virtual block. If the flash does not have a spare area, the

NFTL searches the chain sequentially until it finds the relevant valid page associated with

the virtual block. When data is changed, the page is written to the next physical block

and the old block becomes obsolete. Once all blocks in the chain are used, all valid pages

are written to a new block and it becomes the head of a new chain. If the device uses

spare area, the chain is no longer than two. Changes to pages are written to the second

physical block in the chain, the backup block. There may be multiple versions of virtual

blocks in the backup physical block, but when it is full or space needs to be reclaimed, all

valid data is written to a new physical block, which becomes the head of a new chain of

length two and the old chain of physical blocks are erased [2].

Devices utilizing Windows CE 2.1 and later, along with in-line flash memory, or

flash memory without a controller on board, implement M-Systems’ TrueFFS as a flash

translation layer [16]. For the release of Windows CE .NET 4.2, Microsoft claimed that

it would no longer support TrueFFS [17]. TrueFFS is disclosed in U.S. patent number

5,404,485, but the details of the format used to store relevant data in the spare area, such

as markers for invalid pages are not included. According to the patent, each erase block

contains a header and a map for each page within the block. But the patent does not

specify where, in the block, the map is stored; whether it is distributed amongst the spare

 18

 19

areas for each page or contiguous at the start of the block. Each map entry for a

particular page will have a status field for its corresponding page; indicating whether the

page is free and writeable, deleted and not writeable, or allocated and holds user data

along with its logical address [18].

9. Wear Level Approach with Flash File Systems

While the Flash Translation Layer hides the management of flash memory to the

file system by disguising it as a block device, a file system that is designed specifically

for flash exposes all the details and lets the file system manage wear leveling and block

reclamation. The advantage of the flash file system solution is that it can be more

efficient as the file system is not buried beneath layers of mapping used for block device

emulation. This makes it ideal for resource-constrained devices such as cell phones. But

the FTL is a better solution for removable media, as the FAT format is a rewriteable file

system understood by all Windows, Mac and Unix/Linux platforms [2].

Examples of flash file systems include JFFS/JFFS2 [19] and YAFFS [20]. JFFS

was created for a specific application and is not widely used. JFFS2 was used on the One

Laptop Per Child program [21] and YAFFS is currently being used as the file system for

embedded flash in Android [1]. Unlike the FTL, JFFS/JFFS2 and YAFFS are open

source.

Yet Another Flash File System was developed by Aleph One as a file system

designed specifically for NAND flash. YAFFS stores its file data in chunks. Each

YAFFS chunk is the same size as a NAND flash page, 512 bytes. YAFFS stores

metadata, or tags, in the spare area. This information contains a file id number, a chunk

number, a write serial number, a tag error correcting code, a page status field, a block

status field and the bytes-in-page used. It is the same format used by SmartMedia on

PMCIA cards [20].

 20

Byte SmartMedia Usage YAFFS Usage

0…511 Data Data. Either file data or file header depending on tags.

512…515 Reserved Tags

516 Data Status Byte. Not used. Data Status Byte. If more than 4 bits are zero, then this

page is discarded.

517 Block Status Byte Block Status Byte

518…519 Block Address Tags

520…522 ECC on second 256 bytes of data ECC on second 256 bytes of data

523…524 Block Address Tags

525…527 ECC on first 256 bytes of data ECC on first 256 bytes of data

Table 1. YAFFS Spare Area Detail (From: [20])

Field Comment Size for 1KB Chunk Size for 2KB Chunk

blockState Block state. non-0xFF for bad block 1 byte 1 byte
chunkId 32-bit chunk Id 4 bytes 4 bytes
objectId 32-bit object Id 4 bytes 4 bytes
nBytes Number of data bytes in this chunk 2 bytes 2 bytes
blockSequence sequence number for this block 4 bytes 4 bytes
tagsEcc ECC on tags area 3 bytes 3 bytes
ecc ECC, 3 bytes/256 bytes of data 12 bytes 24 bytes

Table 2. YAFFS Tags Usage (From: [20])

The file id is used to associate the chunk with a file. The chunk number is a count

that starts at zero, which represents the file header, and increases by one for each chunk

needed to store the entire file. A file id of zero indicates that the chunk is deleted, but not

yet erased by the flash garbage collector. The block status field indicates whether a block

has gone bad and the page status field indicates if the page is valid or discarded. If four

bits or more are zero, the page is discarded [20].

When a chunk is “overwritten,” meaning that the data has been updated, the new

data is written to a new flash page, but with the same tag data. The exception is that each

tag receives a 2-bit write serial number that is increased with every write. This serial

number contributes to recovery after a system crash during a write operation. If power is

 21

lost after the new chunk is written, but before the old chunk is marked as dirty, the higher

serial number will indicate the latest version. The old chunk is then marked as a dirty

page within the spare area and is ready for garbage collection.

A block can be erased on two different occasions. The first is if all pages within a

block are dirty, and the second is if there is one page that is still valid. In the second

case, the valid page will be rewritten to a new block and the current block will now be

released for collection [20].

The Journaling Flash File System was designed by Axis Communications and

was released for the 2.0 Linux kernel. The motivation behind developing JFFS was to

address the lack of wear leveling and unsafe rewrite operations when standard file

systems were used, while flash memory was treated as a standard block device with 512

byte sectors. When a standard file system requests blocks from the free list, it tends to

favor blocks that hold data which changes often, while ignoring static ones. This will

lead to uneven wear with some blocks never changing and others with a high turnover

rate [19].

The design of JFFS is a log based file system, in which a circular data structure is

used to write all data sequentially in the form of nodes. JFFS writes data linearly through

the flash device, where the oldest node is the head and the newest is the tail. The header

information for each node contains the name of the file to which it belongs by storing the

32-bit inode number, the name of the file and a 32-bit version number which is totally

ordered for each inode. If a node contains data, the header information will also contain

the offset in the file where the data belongs. A node with a similar offset, but found

earlier in the log is superseded by the later node, distinguished by the version number

[19].

Garbage collection works by observing the node at the head of the log. If the

node is already obsolete, it is skipped and the garbage collection process moves the head

to the next node. If the node is valid, it is rendered obsolete by rewriting the data and

header information to the tail and the head is moved to the next node. This process is

continued until JFFS has rendered a complete flash erase block obsolete. Because the

 22

garbage collection process rewrites nodes to the tail in order to free a complete flash

block, JFFS cannot wait until the entire flash memory has been used—when the tail

meets the head. Therefore, a slack space is needed at all times between the tail and the

head of the log [19].

In order to provide a data compression capability to meet a customer requirement,

the developers at Red Hat reworked JFFS and developed JFFS2. JFFS2 also supports

hard links and improves the efficiency of the garbage collection process. The problems

addressed in garbage collection also changed the layout of the file directory. JFFS2 no

longer uses a circular log data structure. Instead, when the flash device is mounted a map

of only essential information is loaded into memory. This map is a hash table which

contains an entry for each inode. For each entry in the map there exists a struct, named

jffs2_inode_cache, containing the inode number, the pointer to the head of a linked list

that contains all the physical nodes containing the file data and the number of links to the

inode—to support hard links [19].

Essentially, JFFS2 is a series of linked lists. When a file needs to be accessed,

JFFS2 will use the appropriate inode number to look up the jffs2_inode_cache entry in

the hash map. It can then reconstruct the physical layout of the file by walking the linked

list and deriving the physical location of each node from the entries and where it can

remain in memory [19].

All flash erase blocks are assigned to one of three lists: the clean list, which

contains blocks that store valid data; the dirty list, which contains blocks that have at least

one obsolete node and the free list, which contains blocks that have been successfully

deleted. Wear leveling is achieved by statistically choosing the clean list or dirty list to

erase a block when room is needed [19].

B. PRIOR WORK

1. Introduction

Prior art in flash forensics can be classified as work that attempts to identify

methods to recover remnant data from flash memory, attempts to acquire logical and

 23

physical images, or other, where the authors recognize the peculiarities of flash memory,

such as wear leveling and how it impacts data retention. The following is the result of a

thorough search of relevant published articles in the field.

Title Authors Date

Physical Acquisition

Forensic imaging of embedded systems using JTAG [13] Breeuwsma, M 2003

Forensic Data Recovery from Flash Memory [11] Breeuwsma, M., et al 2006

Logical Acquisition

Analysis of USB Flash Drives in a Virtual Environment [22] Bem, D., and Huebner E. 2007

An overall Assessment of Mobile Internal Acquisition Tool [23] Distefano, A. and Me G. 2008

Remnant Data

Data Remnants in Flash Memory Devices [12] Skorobogatov, S. 2005

A Study of Information Privacy and Data Sanitization Problems

[24]

Roubos, D., et al 2007

Ten Good Reasons Why You should Shift Focus to Small Scale

Digital Device Forensics [25]

Knijff, R 2007

An Integrated Approach to Recovering Deleted Files from NAND

Flash Data [26]

Luck, J. and Stokes M. 2008

Recovering data from USB Flash memory sticks that have been

damaged or electronically erased [27]

Phillips, B., Schmidt C.,

Kelly D.

2008

Other

Algorithms and Data Structures for Flash Memories [2] Gal, E. and Toledo S. 2005

An Investigation into the Development of an Anti-Forensic Tool to

Obscure USB Flash Drive Device Information on a Windows XP

Platform [28]

Thomas, P. and Morris A. 2008

Table 3. Prior Work Articles

 24

2. Physical Acquisition

In the paper “Forensic imaging of embedded systems using JTAG (boundary-

scan),” Marcel Brueeuwsma proposes using the Joint Test Action Group (JTAG) as a

physical means to produce an image of stored data in flash memory on an embedded

device. The author’s goal is to produce an image of an embedded system with minimal

changes to the embedded memory; maintaining forensic integrity. In particular, the

author states that for many applications, software needs to be loaded onto the device in

order to begin retrieving data. This process results in a loss of integrity. Small-scale

embedded devices are a suitable target for this technique because they use memory chips

and not disk drives to store data [13].

The JTAG method will make a full forensic copy of the flash memory, but the

difficult task is finding the JTAG test pads. The pads are not necessarily labeled on the

circuit board and the manufacturer might not publish the locations in other literature. The

JTAG pads do not exist on a flash memory chip, but on another component within an

embedded device, such as the processor. The authors offer two JTAG modes that will

result in a complete image with NOR flash: extest and debug, while only extest will work

with NAND. The authors provide a detailed algorithm for identifying JTAG access

ports, through a brute force measure of every pad on the chip board (some pads on the

board are not JTAG) and two alternative, less reliable and more destructive methods that

involve multi-meter testing and x-ray imaging of traces on the circuited board. The

process of measuring each pad involves providing an input to the pad and reading the

output, matching it with an expectation. Other advantages of a JTAG retrieval include

the minimal chance of altering data, while disadvantages include the long process, hard to

find ports and the process may require disassembly of the device as not all devices are

JTAG enabled [13].

In “Forensic Data Recovery from Flash Memory,” Marcel Breeuwsma, et al

present a low level, physical layer method to recover data from a flash memory system

and then analyze the results in order to rebuild the file system. The authors collected 45

different make and model flash memory sticks in which to acquire data. The authors

describe three possible methods to extract the contents from a flash memory chip [11].

 25

The first method is to use a “flasher tool.” A flasher is a device used by

manufacturers for debugging and performing software updates in the field. Flashers are

used by hackers for altering device functionality. Flashers are not generic and no one

tool can be used on all devices because of non-standard interfaces. But one tool may

provide compatibility across a range of devices. A user should be trained on the tool

prior to use, as a flasher may have functions that are potentially harmful to forensic

investigations. Some flashers may not make a full forensic copy of the flash memory.

The authors provide several resources where these tools can be found and display the

functionality of one particular flasher tool [11].

The second method is to use the JTAG access ports. It is the same method as

described in [13].

The third method is to physically remove the flash memory chip from the printed

circuit board and read the memory with a chip programmer. This method involves de-

soldering the chip from the circuit board, cleaning and preparing the chip for further

processing and then reading the chip with a programmer. Each step involves different

alternatives based upon the chip implementation. For example, de-soldering may be

accomplished with a soldering iron or a heat gun; chip preparation and cleaning may

differ based upon whether the chip was removed from a Thin Small-Outline Package or

from a Ball Grid Array. Advantages of physical extraction include a guarantee of data

integrity and a complete forensic image can be obtained, while disadvantages include the

risk of damage [11].

After physical layer data extraction, the authors propose methods to analyze the

data in order to reconstruct the logical layer. This involves a reconstruction of the flash

file system. The authors liberally use the term flash file system to also include the FTL.

The key steps in the process are to understand how the file systems translate the logical

layer to the physical layer and how to distinguish valid from invalid data. With regards

to interpreting FTL data, the authors described the difficulty of retrieving proprietary data

during their attempts in identifying the controller and memory chip manufacturers.

Controllers were especially difficult to identify. While most memory chips clearly were

identified with the manufacturer’s logo, the controllers were not. The authors used the

 26

Internet to research the controllers, but were still unable to identify all. For those chips

identified, FTL documentation was rarely found [11].

Next, the authors narrow their focus to specific implementations of flash memory

on cell phones. They show successful results for reconstructing file systems on Samsung,

Nokia and Symbian phones. Physical layer data was extracted using both flasher tools

and by physically removing the memory chips from the phones. The file systems were

recreated through the use of manufacturer provided documentation, in the case of the

Samsung phone, and through heuristic methods with the Nokia and Symbian phones. In

addition to a reconstruction of the current file systems, the authors were able to partially

recover older file system versions through header information and the understanding of

physical address schemes used in versioning data. The paper concludes with a real-world

evidence collection experience [11].

In the real-world experience, the authors were able to reconstruct the Smart Media

format based upon available literature. They then gave an example of how to reconstruct

an unknown flash file system through identifying the metadata, identifying the

granularity of the file system, analyzing the spare area metadata in order to reconstruct

the logical block numbers and reconstructing the logical to physical map. The authors

were able to confirm their results by comparing hash totals of the blocks of a logical and

physical image [11].

3. Logical Acquisition

In “Analysis of USB Flash Drives in a Virtual Environment,” the authors Derek

Bem and Ewa Huebner discuss the advantages and repercussions of using a virtual

machine to analyze the contents of a USB flash drive obtained in a forensic investigation.

The analysis does not consider the peculiarities inherit in flash devices, such as the FTL,

flash file system, erase functionality or wear leveling. The authors acquire a logical level

image of the data on the flash drive through the dd function via the FTK Imager. The

authors then propose a situation where a forensic investigator would be able to mount a

copy of the original imaged file, search for and record evidence without consideration to

 27

the forensic integrity of the dd file. As far as the methodology used to acquire and

analyze the data, there was no distinction made between a flash drive and a magnetic

device [22].

In "An overall Assessment of Mobile Internal Acquisition Tool," Gianluigi Me

present the Mobile Internal Acquisition Tool (MIAT) as a tool to acquire memory from

Symbian and Windows-based smart phones via the internal memory slot, as opposed to

using data cables or JTAG access pads. The system only acquires logical layer data, not

physical, by use of operating system APIs. The author’s motivation is to establish a

method of low-level data acquisition, with minimal changes to data, which is not

dependent on the large amount of non-standard cable interfaces used by competing smart

phone manufacturers. The tool also offers parallel acquisition and is based upon open

source tools. The use of memory cards to acquire data, with the operating system as an

intermediary, reduces the hardware footprint at the crime scene and makes the MIAT

very portable. The methodology is to start at the file system root and copy a file directory

at a time, creating an md5 hash of each chunk copied. MIAT will recover all logical file

system data structures and deleted database entries, such as contacts, through APIs, but

cannot recover deleted files. MIAT does not guarantee complete data integrity, as some

files may be modified through the use of some APIs. The presentation compares MIAT

to the Paraben Device Seizure, a proprietary tool that also utilizes logical acquisition

methods. The data recovery coverage is better than the Paraben system; is equal in

integrity, but is slower in acquisition time [23].

4. Remnant Data

In “Data Remanence in Flash Memory Devices,” Sergei Skorobogatov proposes a

method to extract remnant data from flash cells that have been erased. Remnant data is

information that can be recovered from a storage media after new information has been

written over old, in attempts to delete or overwrite the old information. Remnant data is

most often associated with magnetic media. This is different than residual data, which is

information that has been unintentionally left behind at any level of a computer system.

The author provides example targets such as smartcards and microcontrollers, which

 28

utilize a password protected boot-loader that restricts firmware updates and data access.

In particular, the author is targeting NOR flash. Typically, the on-chip operating system

will completely erase code and memory before uploading new code, so that a new

program cannot access old keys and previously encrypted data. The process of writing to

a cell, capturing electrons, will cause a gradual accumulation of electrons in the cell

which the erasing cannot release. This is one cause for the limited lifetime of flash

memory, as it is no longer possible to erase a cell back to the one state after a write

because of the accumulation of electrons [12].

The author found that there is a difference in the threshold voltage of a cell that

was programmed to zero and then erased, and a cell that had not been erased. He also

found that cells that were subjected to an erase operation, that were already erased

(holding a value of one), would hold a positive charge. The author’s best results were

taken on cells that had not been programmed and with those that had been programmed

and subject to just one erase operation. The author implemented two different methods in

order to measure a cell’s threshold voltage. The non-invasive method involved

connecting the memory chips to a test board controlled by a PC that could directly

control the voltages. The semi-invasive method involved the use of a laser diode pointer

to read threshold voltages. His methods will only work on a small number of chips,

which are older designs. The author provides countermeasures including cycling 10–100

program/erase operations with random data before programming sensitive data; program

all cells directly prior to performing an erase operation; use chips based upon newer

technology, because newer hardware with higher densities will make retrieval more

difficult. The author does not explain why he chose 10 to 100 operations; the number

appears to be arbitrary, but he does reference methods proposed in Peter Gutmann’s

controversial article regarding remnant data on magnetic disk drives [29] [30] [31]. The

author also acknowledges the possibility that residual data may exist at the physical layer

after blocks have been mapped out, but before the blocks have been erased [12].

In "Ten Good Reasons Why You should Shift Focus to Small Scale Digital

Device Forensics," Ronald van der Knijff presents the reasons why more consideration is

needed in the field of Small Scale Digital Device Forensics. The presentation is

 29

European focused, in particular from the perspective of a member of the Netherlands

Forensic Institute. His arguments include: a 100% mobile phone penetration rate in the

Netherlands in 2007; personal devices are only getting smaller with flash EEPROM the

most popular means to store data; flash has more potential forensic opportunity than disk

drives; anti-forensic methods are more difficult on small-scale digital devices than on

personal computers; the tools and procedures used for small scale devices are not as

developed as other forensic tools. After presenting his argument, the author presents and

evaluates various current data extraction tools and methods. At the physical level, he

presents the JTAG method and the physical extraction of memory chips. At the logical

level, he reviews flasher tools. In general, advantages of physical extraction include data

integrity and the possibility of producing a complete forensic image. Flasher tools are

easier to use, but may not guarantee a complete forensic image of the flash memory. The

author presents experiences in data recovery methodology, including recreating the file

system from physical layer acquisition to recreating deleted or incomplete video files. He

concludes with future research opportunities [25].

In “A Study of Information Privacy and Data Sanitization Problems,” Demetrios

Roubos, et al. describe the privacy issues caused by not sanitizing digital storage medium

properly upon disposal. The paper provides anecdotal evidence of privacy data recovered

from hard disk drives after purchase on the secondary market without the use of proper

sanitization techniques. After offering a history of hard disk drives, the authors provide

an overview of sanitization tools and standards. While the majority of the paper is

concerned with hard disk drives, the authors provide a section on flash memory devices.

A readily available tool for sanitization, such as provided for hard disk drives, is not

presented; the authors provide a standard to guide the reader based upon the Department

of Defense standard for sanitizing Flash EPROM. The authors guide the reader to erase

the entire chip and then overwrite all locations that contained data with a character, then

its compliment, and then with a random character, which is the DoD standard, 5220.22–

M, "National Industrial Security Program Operating Manual" [32], and may have been

supplemented by NIST SP800–88. This only addresses the logical layer, as controller

proprietary commands are needed to access the physical layer data. The three pass

 30

method may not effectively erase a flash device as spare area metadata may not be

reached and artifacts created by wear leveling, out of place writes and block recovery

operations may not be addressed by erasing and overwriting data at the logical layer [24].

In “An Integrated Approach to Recovering Deleted Files from NAND Flash

Data,” the authors, James Luck and Mark Stokes, propose a methodology to recover

deleted or corrupted MPEG-4 video through the use of recovered file metadata. The

authors do not propose how the physical image was obtained, but do step through the

process of rebuilding the FAT volume by building a version table containing all available

versions of logical sectors. Different versions of video files can then be constructed

using different versions of the same logical sectors and any missing sectors are filled with

null place holders so video files may still load. The authors also used the Volume Boot

Record to aid in rebuilding the FAT. For example, the VBR was able to tell the authors

the sector size, the number of sectors, and the root directory. The authors make particular

note about the fact that files on flash will become especially fragmented. It is not clear if

they are referring to physical layer fragmentation or logical layer fragmentation, but

because the authors assume that the File Allocation Table is unfragmented, they appear to

be performing a logical layer recovery. The process from here entails rebuilding deleted

files at the logical level and is not flash specific. The process involves recovering files

through analysis of the File Allocation Table, identifying MPEG-4 data through header

analysis and filling gaps within the deleted file, which reestablishes the ability to play the

files on readily available video playback software [26].

In “Recovering data from USB Flash memory sticks that have been damaged or

electronically erased,” Braden Phillips, Duwayne Schmidt and Dan Kelly describe a

series of experiments that attempt to physically damage flash memory devices and then

recover the data previously stored upon the devices. The authors used two different

methods to recover the data: through connecting the flash memory device to a computer,

and by directly connecting a microcontroller to the flash memory chips [27].

The authors’ experiments consisted of saving a text file and compressed audio

files to a number of flash devices, and then applying over-voltage from a car battery to

the signal lines, power and ground pins and to the data lines of a flash device; soaking a

 31

flash device in water to induce corrosion and cause a short circuit; incinerating a device

with petrol; stomping on a device with a rubber heel boot; striking a device with a

hammer; shooting a device with a 9 mm pistol and cooking a device in a microwave. The

authors were able to recover data from the devices that were damaged by over-voltage,

stomped upon, soaked in water and incinerated. They were not able to read data back

from the devices that were cooked in the microwave oven, smashed with a hammer and

shot with the pistol. While the experiments were amusing, they lacked controls and had

no way of evaluating the amount of damage that was necessary to render the device

unusable [27].

5. Other

In "Algorithms and Data Structures for Flash Memories," Eran Gal and Sivan

Toledo surveyed the U.S. Patent applications for technologies that address flash specific

storage techniques in order to explain flash file systems. The authors state the

inadequacy of magnetic disk file systems for use with flash memory, such as wear

leveling. They present summarized versions of the algorithms and data structures from

patent applications that address the peculiarities of flash memory and data structures used

for application specific memory storage [2].

In “An Investigation into the Development of an Anti-Forensic Tool to Obscure

USB Flash Drive Device Information on a Windows XP Platform,” Paula Thomas and

Alun Morris analyze the registry key entries on a Windows XP system to find the

changes made by USB storage devices and develop an Anti-Forensics tool that will delete

or obscure these entries. After an introduction to the prevalent use of USB storage

devices for legal purposes and in criminal activities, the authors describe the detail entries

of registry keys in a Microsoft XP environment and the data stored that uniquely

identifies a USB storage device, along with its vendor/manufacturer, product

identification and how to find the drive letter assigned when it was last connected to the

system. In addition to registry entries, the authors provide an analysis of log files that

will contain the last time a particular device was connected to the system, and which

drivers were required to be installed so the device could be used [28].

 32

The ultimate goal of the analysis provided was to develop a tool that could

obscure the changes made to a Windows XP system to cause delays in investigating the

forensic trail. The authors developed a tool that can be stored upon a USB storage device

and run automatically upon connection. The tool provides the following functions: the

ability to add a fake device to the registry; the ability to delete the keys associated with a

device that was registered on the system; amend the log file with a false entry and display

the Modify, Access and Change times associated with USB device activity, with the

option to email the results to a given email address. Future work included modifying

registry keys that the authors overlooked and had not found after their prototype was

developed, and developing better Anti-Forensic information that looked less suspicious to

a potential forensic investigator [28].

 33

III. OPPORTUNITES FOR RECOVERY

A. RESIDUAL DATA AS A RESULT OF OUT OF PLACE WRITES

1. Background

The physical characteristics of flash memory provide the opportunity to recover

residual data. Residual data is information unintentionally left behind on computer media

and can exist at any level of a computer system. Remnant data is information that can be

recovered from a storage media after new information has been written to the media. An

out of place write caused by an overwrite operation provides the best opportunity for the

recovery of residual data in flash memory. An overwrite can be triggered by a user

changing data within a file, altering the metadata associated with a file or deleting the

file. These operations will all cause changes to be made to data at the logical level, but

because of the physical limitations of flash memory, the changed data cannot be rewritten

to the same flash page on the flash memory device. The Flash Transition Layer (FTL) or

the flash file system will rewrite the changed data onto a different, clean flash page, mark

the old page as dirty and queue the dirty page for garbage collection. How long the old

page remains on the flash device without further alteration will be dependent upon the

implementation of the flash file system, or FTL, and when the system decides it needs to

reclaim blocks.

In addition to recovering deleted data, observation of the metadata tags and

mapping structures associated with the residual data can be used to recreate older

versions of files that still exist on the flash media, or at least show that the current version

on the flash device is not the original version [11].

2. FTL

M-System’s TrueFFS and Intel’s FTL present the flash device to a host system as

a block device utilizing a FAT file system. So, the host system will attempt to rewrite

changes to a file back to the same sector. Because the host system is only working at the

logical level, these changes also include the attempt by the host to delete a file, as this is

just a rewrite, altering data in the FAT. The FTL will write the changed data to the first

clean flash page it finds. The FTL will write out the new data to the physical location

and mark the old flash page as obsolete by altering the entry in the block allocation map.

The new page may be within the same block if there is room. If not, the page will be

written to a new block. The page will not be erased until the flash device is full and a

flash block with dirty pages needs to be erased in order to free up space. Our literature

review found no information on how the FTL chooses which block to erase when space is

needed. Garbage collection priority is not specified within the patent, but might be based

upon the number of invalid pages within the block and the block’s erase count. Either

way, the length of time residual data exists on the flash is not solely dependent upon the

extent of utilization [33].

Figure 7. Target for Recovery in the FTL

TrueFFS has an additional feature called the FAT filter. TrueFFS monitors the

FAT for changes that indicate clusters that have been freed. TrueFFS will in turn mark

the associated pages as obsolete. The blocks containing these pages may now become

available for garbage collection earlier than if the FAT filter were not implemented. This

may decrease the time residual data exists on a flash memory device utilizing TrueFFS

[34].

Locating obsolete pages with the same logical sequence number as valid pages

may be used for file versioning. But one would have to use file carving techniques to

determine if a recreated file, using an obsolete page with the same logical sequence

number, makes sense, because unlike flash file systems, the FTL does not store useful

 34

 35

metadata such as inodes and file names in the spare area; carving would be done on 512

byte page boundaries. The only helpful information used for file carving is the file

metadata stored within the data area used by the FAT file system [11].

3. YAFFS

In YAFFS, when data is overwritten in flash, the new data is written to a new

flash page with the same metadata tags and the old page is simply marked as discarded.

This is done by programming a data status field within the YAFFS metadata that are

stored in the spare area for the flash page. But the original data within the page remains

unaltered. Pages are not assigned to a dirty list and queued for garbage collection. Only

blocks are assigned and only those blocks that contain one or less valid pages. If the

embedded flash device has been filled and there is a need for a clean block to write

additional data, YAFFS will first check the dirty list, choose a block, erase it and then

write the new data. If there are no entirely dirty blocks to choose, YAFFS will choose

the block with the most dirty pages, rewrite the valid pages onto a clean block, erase the

block that now contains only dirty pages and write the new data. In either case, the old

residual data will now be lost. The time before a page is erased will depend upon how

much the flash device is utilized. The best opportunity for data recovery exists when a

flash device has been written to infrequently [20].

YAFFS uses a file id stored in the spare area, which is similar to an inode

number. A page that has been marked as invalid, but contains the same file id as a

currently valid page will hold previous version data, while the page id will tell where the

information belongs within the file [20].

Figure 8. Target for Recovery in YAFFS

4. JFFS

The log structure used in JFFS will affect the timing of when a page is marked

obsolete by an update. This log file may provide additional opportunities for the

recovery of residual data. An update to a file may not completely invalidate an old page.

Take the following example: 200 bytes of “A” are written to the file at offset zero. Then

200 bytes of “B” are written to the file at offset 200. Now, an update to the file is made

by writing 50 bytes of “C” at offset 175. This is an overwrite to the file at offset 175

through 225. But, the first two pages will not be invalidated because page one contains

valid data for offsets 0 through 175, and page two contains valid data at 225 through 400.

A page is not marked dirty until a later page completely invalidates an older page. In the

earlier example, if a user were to write 200 bytes of “C” at offset zero, then page one in

the file would be marked as dirty. Pages are written out sequentially to the flash device

until it is filled. At this point, a block will need to be reclaimed so new data may be

written and the garbage collection process begins. At this point, residual data will be at

risk of being erased [19].

So there are two opportunities for residual data to exist on a flash memory device

using a flash file system. The first is when a page is not completely invalidated; as in the

first example above. The data that exists in just the areas invalidated by a future write

will contain information related to older versions of the file. Additionally, this page is

 36

not subject to garbage collection, as it still contains valid data, and it will exist on the

flash device for a longer time than if the page were invalidated.

The second opportunity exists when a page is completely invalidated, but the head

of the log has not yet reached the block containing the obsolete page. Once the head of

the log reaches this block, all valid pages will be written out to a clean block, and this

dirty block will be erased. The length of time the page remains on the flash device will

depend upon usage. A flash device utilizing JFFS, which has been written to minimally,

will provide the best opportunity for the recovery of residual data.

Figure 9. Target for Recovery in JFFS

Another versioning opportunity exists by examining the metadata stored with

each page or node. Each node stores the parent’s inode, file name and metadata in the

flash page’s spare area. By matching the parent inode of an obsolete page to a current in-

use inode, along with the file name, an earlier version of the file can be created by

inserting the data at the appropriate offset. In addition, MAC times stored with the node

can also help in recreating timelines [19].

5. JFFS2

The rework for JFFS2 slightly alters the opportunity to recover residual data. All

erase blocks will belong to one of three lists: a clean list that contains all blocks that have

only valid pages; a dirty list that contains all blocks with at least one dirty page; and a

free list that contains all blocks that contain no data. When a fresh block is needed to

 37

 38

write data, 99 times out of 100 the garbage collection process will choose a block from

the dirty list to erase and the remaining times will choose a block from the clean list. It is

not a pure log system, but it may keep residual data on the flash slightly longer, as a

block with valid data is subject to garbage collection 1 out of 100 times. The versioning

opportunity, for both pages remaining valid after an update and pages invalidated,

remains the same as in JFFS and metadata still exists in the spare area. The opportunity

for recovery is greatest on systems that are used infrequently. It is also important to note

that JFFS2 uses a compression scheme, so any data recovered from the raw device will

need to be uncompressed before it can be used [19].

B. EFFECTS OF FRAGMENTATION ON DATA RECOVERY

After a flash device is filled for the first time, where the flash file system or FTL

decides to write new data is no longer based upon location, but will depend on variables

such as the number of dirty pages in a block, or a block’s erase count. Whatever method

is used, a file’s pages will no longer be grouped based upon spatial locality, causing files

to become ever more fragmented as the flash is used. This fragmentation has two

impacts.

The first impact is that larger files will become increasingly harder to recover, the

more a flash device is used. Although, logically, large video and picture files will seem

to have very little fragmentation, if any at all, physically they will be saved throughout

the flash device as pages become available. The files will become ever more fragmented

as they are altered by the user. The best opportunity of recovery is of files that can fit

within a single page, or files under 512 bytes, as carving files with multiple fragmentation

points is difficult [35]. This may limit recoverable items to smaller text files and lower

resolution images.

The second implication of fragmentation is that it provides a signature for a flash

device that has been used previously. A hard disk drive may be wiped clean, then

reformatted with a new file system and can look much like a drive that was just shipped

 39

by the manufacturer. But without physical layer access, any attempt by a user to wipe a

flash memory device and then reformat it will still leave the device fragmented and might

leave blocks that have not been garbage collected.

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

IV. RECOVERY EXPERIMENTS

The following experiments test the theories of data recovery proposed in Chapter

III. They test the effects on flash memory of a deleted file, an overwritten file and the

renaming of a file. In addition, the effects of heavy usage on fragmentation is observed

and how background processes, such as garbage collection and wear leveling may affect

the forensic integrity of a device. The following experiments were conducted on a Linux

operating system and using a NAND flash simulator mounted with the YAFFS2 and

JFFS2 file systems because of their relevance. The FTL was not tested because we

lacked the access to a physical device.

A. PREPARATION OF SYSTEM

The Ubuntu Linux kernel version 2.6.28 includes the JFFS2 file system. No

further source code needed to be downloaded and included in the kernel source code;

YAFFS2 is not included. In addition, JFFS2 has compression enabled and does not

support NAND flash by default. To easily observe the effects of wear leveling

techniques, JFFS2 needed to be reconfigured to turn the compression algorithms off.

This allowed us to observe the effects JFFS2 had upon the physical layer, without having

to research the compression algorithm and uncompress the data each time we took a

physical layer image. These modifications required the kernel to be recompiled. We did

not have access to a raw flash memory device (one without an FTL), so experiments were

run using a simulated NAND flash device in RAM.

The following steps were taken to prepare an Ubuntu operating system in a virtual

environment using VMware Workstation 6.5.0:

1. sudo apt-get install fakeroot kernel-package libncurses5-dev

linux-source-2.6.28 installed the appropriate tools for configuring and building a

kernel.

2. sudo tar xvjf /usr/src/linux-source-2.6.28.tar.bz2 uncompressed

the kernel source code.

 42

3. CVS was downloaded and installed through the synaptic package manager.

4. The YAFFS2 source code was downloaded and installed with export

CVSROOT=:pserver:anonymous@cvs.aleph1.co.uk:/home/aleph1/cvs cvs logon

and then cvs checkout yaffs2.

5. A change in the source code was needed in order for the kernel to compile

successfully. Line 757 of file yaffs_fs.c from “pg = grab_cache_page(mapping, index);”

was changed to “pg = __grab_cache_page(mapping, index);”.

6. The YAFFS2 source code was copied to the appropriate location in the kernel

source directory with sudo ./patch-ker.sh c /usr/src/linux-source-2.6.28/.

7. The commands to compile the kernel were issued from the source code

directory in /usr/src/linux-source-2.6.28/.

8. The kernel configuration menu was launched with sudo make menuconfig.

9. The “Files systems” option on the configuration menu was selected first.

Figure 10. Kernel Configuration Step 9

10. Next, “Miscellaneous filesystems” was selected.

 43

Figure 11. Kernel Configuration Step 10

11. “YAFFS2 file system support” was enabled.

 44

Figure 12. Kernel Configuration Step 11

12. The “Lets Yaffs do its own ECC” option was selected.

13. “Cache short names in RAM” was deselected.

14. Then, to configure JFFS2, “JFFS2 ZLIB compression support”, “JFFS2 LZO

compression support” and “JFFS2 RTIME compression support” were deselected under

“Journalling Flash File System v2 (JFFS2) support”. “JFFS2 write-buffering support”

was left selected to provide NAND support for JFFS2.

 45

Figure 13. Kernel Configuration Step 14

15. “JFFS2 default compression mode (priority)” was selected and then “no

compression” was selected to disable all compression.

Figure 14. Kernel Configuration Step 15

 46

 47

16. These settings were saved and the Configuration menu was exited.

17. To clean the source tree and reset the kernel-package parameters sudo make-

kpkg clean command was run.

18. sudo fakeroot make-kpkg --initrd --revision=custom.1.0

kernel_image compiled the kernel.

19. sudo dpkg -i ../linux-image-2.6.28.9_custom.1.0_i386.deb

installed the new kernel.

20. sudo shutdown -r now rebooted the system and the new kernel loaded.

The steps to mount a JFFS2 and YAFFS2 file system onto the simulated devices

were:

1. The mtd-utils package was downloaded with the Synaptic Package Manager.

MTD utilities are a collection of tools that allow the user to interact with the MTD

subsystem in the kernel to perform operations on Flash devices.

2. Two directories, one for JFFS2 and one for YAFFS2 to mount, were created.

/mnt/nandyaffs and /mnt/nandjffs were used for these experiments.

3. sudo modprobe mtd, modprobe jffs2, modprobe mtdchar and modprobe

mtdblock loaded the appropriate tools to use the mtd subsystem. sudo modprobe

nandsim first_id_byte=0x20 second_id_byte=0x33 created an mtd device of size

16MB, simulating a NAND flash device in RAM. mtdram and mtd2block can also be

used to simulate a flash device, but these tools simulate NOR flash.

B. EXPERIMENTS

Each experiment was conducted on a NAND flash simulator mounted with JFFS2

and with YAFFS2. All experiments began with a blank file system. This was achieved

by dismounting the mtdblock device after each experiment and then erasing the entire

device. At the start of each experiment, the simulated flash device is mounted for the

first time. The YAFFS2 and JFFS2 file systems were mounted on a 16MB device with

512 byte pages, 16KB erase blocks and 16 bytes of spare area. The results of the

 48

experiments were observed by retrieving the data off of the mtd device, with the

nanddump command, to an image file and observing the file with the hex editor hexedit.

dd, dcfldd and mtd_debug read could all have been used to retrieve data from the mtd

device, but nanddump gave the option to also retrieve spare area information, which best

simulated a physical layer memory dump of a flash memory device. The command sudo

apt-get install hexedit downloaded and installed hexedit. mount -t jffs2

/dev/mtdblock0 /mnt/nandjffs mounted the mtd0 device with the JFFS2 file system

and mount -t yaffs2 /dev/mtdblock0 /mnt/nandyaffs mounted the mtd0 device

with the YAFFS2 file system. All experiments were conducted using Python 2.6

programs.

1. Test the Ability to Write and Read from a Simulated NAND Device

The experiment:

 The simulated flash device was mounted.

 A 512 byte file, beginning with the phrase “NPS Beginning of a page” and

ending with the phrase “NPS End of a page”, was written to the flash

device.

 The device was unmounted.

 The entire contents of the flash device were read and saved to an external

file in order to be observed later.

 The flash device was completely erased so that a clean file system was

ready for the next experiment.

The results:

The entire file containing the flag word “NPS” was recovered in both the

YAFFS2 and JFFS2 mounted devices. The file was recovered on the YAFFS2 file

system at byte offset 0x00. The first page was the original object header, written when

the file was first created. It contained the file name and the size of the file when it was

first created, which was zero. The second page contained updated object header metadata

 49

such as user id, group id and Modified/Access/Create times. This was followed by the

file’s data and then the fourth page, which contained another updated object header, to

include the new length of the file after the data was written to flash. YAFFS2 writes the

name “silly old name” when updating object header metadata such as user id and group

id. This “silly old name” operation updates far more metadata than the update operation

that resulted in the write of the fourth page. In the following figures, the red lines outline

one data page, while the blue lines outline one spare area, which corresponds to the data

page immediately preceding it.

Figure 15. YAFFS2 Recovered File

 50

The file on the JFFS2 file system was recovered at byte offset 0x1077BE8 and

used two pages for both data and metadata. Metadata was stored at the beginning and the

end of the file and the file’s data crossed a page boundary.

Figure 16. JFFS2 Recovered File

2. Effects of Renaming a File

The experiment:

 The flash device was mounted.

 A 512 byte file named “file1”, beginning with the phrase “NPS Beginning

of a page” and ending with the phrase “NPS End of a page”, was written

to the flash device.

 The device was unmounted and the entire contents of the flash device

were read and saved to an external file.

 51

 52

 The flash device was then mounted again and the file was renamed from

“file1” to “file2”

 The device was unmounted and the entire contents of the flash device

were read and saved to second external file.

 The flash device was then completely erased.

The results:

With the YAFFS2 file system, the file was recovered at byte offset 0x00. Similar

to experiment 1, the first page contained the original file name and file size at the time the

file was created. The second page contained the updated file header info. The third page

contained the file’s data and the fourth page was an updated object header page

containing the file name and new size. After the file was renamed, two additional pages

were written to the flash device immediately following the first four pages, while the

outdated header pages remained on the flash. The two new pages were written when the

file was first touched and then when the filename was changed. The first new page

contained updated object header metadata, writing the new MAC times and then

rewriting information such as user id and group ids. The second page contained the new

filename and another update to the MAC times. In the following image, each red block is

a flash page and the subsequent blue block is its spare area.

Figure 17. YAFFS2 Effects of Rename Operation
 53

With the JFFS2 file system, the original file occupied two pages with header

metadata and file data mixed into the same pages beginning at offset 0x1067400. The

first page begins with metadata and the file data spanned both pages. After the rename

operation, a third page was appended to the first two, containing the new header

metadata, including the new filename, while the out versioned file header remained on

the flash. In the following image, the red blocks represent one flash page and the blue

blocks represent its associated spare area.

Figure 18. JFFS2 Effects of Rename Operation

 54

 55

3. Effects of Deleting a File

The experiment:

 The flash device was mounted; a 512 byte file named “file1”, beginning

with the phrase “NPS Beginning of a page” and ending with the phrase

“NPS End of a page”, was written to the flash device.

 The device was unmounted in order to flush the buffer and the entire

contents of the flash device were read and saved to an external file.

 The flash device was then mounted again and the file was deleted.

 The device was unmounted and the entire contents of the flash device

were read and saved to a second external file.

 The flash device was then completely erased.

The results:

With the YAFFS2 file system, the results were similar to a rename operation.

Two new pages were written containing object header updates. The difference was in

the second new page written as a result of the rename operation. After the file was

deleted, the second updated header page contained a new filename, “unlinked,” updated

MAC times, with the user id, group id and other object metadata set to zero and the size

of the file reset back to zero. The original file remained on the flash device, unaltered.

Figure 19. YAFFS2 Effects of a Delete

 56

With the JFFS2 file system, the original file occupied two pages with header

metadata and file data mixed into the same pages beginning at offset 0x1046400. The

first page began with metadata and the file’s data spanned both pages. After the file was

deleted, a third page was written to the flash device containing updated inode

information, meant to replace the original. The original file data, along with its metadata

remained on the flash device, unaltered.

Figure 20. JFFS2 Effects of a Delete

 57

 58

4. Effects of a Partial Overwrite

The experiment:

 The flash device was mounted.

 A 512 byte file named “file1”, beginning with the phrase “NPS Beginning

of a page” and ending with the phrase “NPS End of a page”, was written

to the flash device.

 The device was unmounted in order to flush the buffer and the entire

contents of the flash device were read and saved to an external file.

 The flash device was mounted again and 50 bytes of the file, at an offset

250 bytes into the file were overwritten, changing 50 ASCII “A”s to 50

ASCII “Z”s. This was accomplished through the dd command.

 The device was then unmounted and the entire contents of the flash device

were read and saved to a second external file.

 The flash device was then completely erased.

The results:

With the YAFFS2 file system, after the partial overwrite, two new pages were

written to the flash. The first page contained the entirety of the updated file’s data,

including both the overwritten portion and the data that was not altered. A second page

was written containing updated object header metadata including MAC times and file

length, but not the robust object header update seen when “silly old name” is written.

The original file remained on the device unaltered.

Figure 21. YAFFS2 Effects of a Partial Overwrite

 59

With the JFFS2 file system, the new data alone was written to a new page, along

with its metadata, after the original file. When the file system reads this file, it will

overwrite the original file with the updated data at the appropriate offset into the file.

The original file remained on the flash device, unaltered.

Figure 22. JFFS2 Effects of a Partial Overwrite

 60

 61

5. Effects of a Complete Overwrite

The experiment:

 The flash device was mounted.

 A 512 byte file named “file1”, beginning with the phrase “NPS Beginning

of a page” and ending with the phrase “NPS End of a page”, was written

to the flash device.

 The device was unmounted in order to flush the buffer and the entire

contents of the flash device were read and saved to an external file.

 The flash device was mounted again and 512 bytes of the file, at an offset

0 bytes into the file were overwritten, changing all file contents to 512

ASCII “Z”s. This was accomplished through the dd command.

 The device was then unmounted and the entire contents of the flash device

were read and saved to a second external file.

 The flash device was then completely erased.

The results:

With the YAFFS2 file system, after a complete overwrite, two new pages were

written to the flash. The first page contained the entirety of the updated file’s data, while

the second page written contained the updated object header metadata including MAC

times and file length, but not the robust object header update seen when “silly old name”

is written. The original file remained on the device unaltered.

Figure 23. YAFFS2 Effects of a Complete Overwrite

 62

With the JFFS2 file system, the new data was written over two new pages, along

with updated metadata, after the original file. The original file remained on the flash

device, unaltered.

Figure 24. JFFS2 Effects of a Complete Overwrite

 63

 64

6. Is One File Big Enough to Sanitize?

This experiment tests the hypothesis that, if a file the size of the flash device is

written, it will successfully sanitize the device of all previously saved data.

The experiment:

 The flash device was mounted.

 A 512 byte file named “file1”, beginning with the phrase “NPS Beginning

of a page” and ending with the phrase “NPS End of a page”, was written

to the flash device and the device was unmounted in order to flush the

buffer.

 The flash device was then mounted again and “file1” was erased.

 The device was then unmounted and the entire contents of the flash device

were read and saved to an external file.

 The device was mounted again and a 16MB file, containing all zeros and

named “file2” was written to the device, with the dd command and a block

size of 512 bytes.

 The device was unmounted again, to flush the buffer and the contents of

the file were read and saved to a second external file.

 The device was then remounted and “file2” was deleted.

 The device was unmounted again and the contents were read and saved to

a third external file.

 The flash device was then completely erased.

In both the YAFFS2 and JFFS2 file systems, no traces of the original file were

recovered. The image obtained after “file2” was deleted was then compared to a clean

image of the flash device. YAFFS2 erased all but 4 blocks after “file2” was deleted.

Within those remaining four blocks, were the evidence of a sanitization attempt and a

 65

delete operation, including the effects of updates to header objects, some residual file

data along with its out of band data, the “silly old name” string and the “unlinked” string.

The filename, “file2”, was not recoverable.

With JFFS2, there were nine blocks that were not erased as part of deleting

“file2”. Those nine blocks contained file data and JFFS2 metadata. In addition, the

filename “file2” was also recovered. When compared to a clean JFFS2 file image, these

nine blocks of data showed evidence of a sanitization attempt. The remaining blocks that

were successfully erased contained clean markers, which are also on the clean JFFS2

image. JFFS2 uses clean markers to ensure a block erase operation was correctly

completed and blocks are safe to store information.

7. Background Processes Effect on Forensic Integrity

This experiment determines whether background process, such as garbage

collection and wear leveling, will have an effect on the forensic integrity of a flash

device, when there has been no change to user data.

The experiment:

 An image was taken of a clean, erased device.

 The device was mounted, unmounted and another image was taken.

 The device was mounted again.

 The program running the experiment slept for 60 seconds and then the

device was unmounted.

 A third image was taken and the flash device was erased.

 An md5 sum was computed of all three images and the results were

compared. The command line tool md5sum was used for computing the

hash totals.

The results:

 66

All three hash totals computed on the YAFFS2 file system were the same. For the

JFFS2 file system, the first hash total computed on the clean device was different than the

second and third. The second hash total and the third (calculated after the 60-second

sleep operation) were the same. The difference between the first image and the second

was due to clean markers written to each erase block.

8. The Effects of Heavy Usage on Fragmentation

This experiment tests whether a file written to a flash memory device that is

heavily used will be fragmented at the physical layer. A fragmented file will not impact

performance, but it will complicate forensic recovery.

The benchmarking program, PostMark, was used to simulate a heavily-used flash

memory device found in the field. PostMark was designed to create a large pool of

continually changing files, and to measure the transaction rates for a workload

approximating a large Internet electronic mail server. PostMark generates an initial pool

of random text files ranging in size from a configurable low bound to a configurable high

bound. This file pool is of configurable size and can be located on any accessible file

system. Once the pool has been created, a specified number of transactions occurs. Each

transaction consists of a pair of smaller transactions: create a file or delete a file; read a

file or append to a file [36].

The experiment was conducted on each file system twice. The difference

between the two experiments was the number of files deleted after PostMark completed,

in order to free memory so a new file could be created. The first experiment deletes a

small number of files at the logical level in order to create a new file; the second deletes

all files created by PostMark. The PostMark source code was altered so that it did not

delete any files when the benchmarking completed. This gave us more control over the

amount of space used on the device when we wrote a new file. The two experiments

were run because of significantly different results observed in YAFFS2. For all

experiments, there were 1,000 simultaneous files, ranging from 500 bytes to 10KB, and

50,000 transactions performed.

 67

Experiment version one:

 The device was mounted and the postmark benchmarking program was

run.

 The device was unmounted to flush the buffer and then remounted.

 93KB of data was deleted to make room for a new file.

 The device was unmounted and an image was acquired.

 The device was mounted, a 50KB file was written, and the device was

unmounted.

 A second image was taken and the flash device was erased.

The results:

 The file was recovered from the YAFFS2 flash device with six

fragmentation points.

 The file was recovered from the JFFS2 flash device with two

fragmentation points.

Experiment version two:

 The device was mounted and the postmark benchmarking program was

run.

 The device was unmounted to flush the buffer and then mounted.

 Then all files were deleted to make room for a new file.

 The device was unmounted and an image was acquired.

 The device was mounted, a 50KB file was written, and the device was

unmounted.

 A second image was taken and the flash device was erased.

 68

The results:

The results were significantly different for the YAFFS2 device when all the files

were deleted. YAFFS2 performed a large amount of garbage collection. All but one

block was erased. This resulted in a file that was not fragmented. The block that was not

garbage collected contained a small amount of residual data from the deleted files. In

particular, the pages held updated header object information, including the strings

“unlinked” and “silly old name,” but not file names.

JFFS2 did not perform as radical a garbage collection operation as YAFFS2. The

file was recovered with three fragmentation points.

 69

V. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

Flash memory devices are popular worldwide and include cell phones, mp3

players, SD cards, digital cameras and solid-state hard drives. Tools used today to

analyze these devices treat flash memory much like a hard disk drive. The physical

differences between hard disk drives and flash memory require forensic tools that are

specifically designed to address flash memory.

The write once limitation of flash memory requires file changes to be stored in a

different physical location. Also, wear leveling algorithms are implemented to prohibit

flash memory blocks that contain frequently-altered data from going bad more quickly

than those that hold static data. There are two methods to address these requirements: a

flash file system and the Flash Transition Layer (FTL). The FTL allows flash devices to

be used with unmodified legacy operating systems. It introduces a logical layer above

the physical layer that hides the details of flash management from the operating system.

USB thumb drives and SD cards utilize an FTL. A flash file system provides better

utilization of flash storage at a somewhat higher cost. Two examples of flash file systems

are YAFFS, which is used in Google’s Android, and JFFS2, used in the OLPC program.

The FTL and flash file system solutions both provide an opportunity to recover old data

and metadata after a file is changed or deleted, and the new information is written to a

new physical location.

This thesis contributed the following to the field of computer forensics:

 The first comprehensive survey of the academic literature regarding flash
forensics.

 Thorough review of the FTL, flash file systems and flash memory patents
with respect to the opportunities for recovering residual data.

 Clearly documented steps for configuring Linux to use YAFFS and JFFS2
with a flash simulator.

 Experiments which used a flash simulator and file system operations to
determine residual data left by YAFFS and JFFS2.

 70

 Discussed the possibilities for recovering residual data from the FTL.

Through the use of the YAFFS and JFFS2 file systems and a NAND flash

simulator on a Linux operating system, we:

 Successfully recovered a deleted file.

 Successfully recovered a partially and a completely overwritten file.

 Successfully recovered the previous name of a file that was renamed.

 Determined that the background processes of YAFFS and JFFS2, such as
garbage collection and wear leveling, did not affect the forensic integrity
of the flash memory.

 Determined that writing one large file, the size of the flash memory
device, was sufficient for sanitization purposes. But, evidence remained
of the sanitization attempt, even after the file was deleted.

 Confirmed that a heavily used and practically full flash memory device
resulted in a newly written file to have multiple fragmentation points,
complicating file carving attempts. But with the use of YAFFS, the result
of deleting all the files in order to free up room, triggered a large garbage
collection procedure that erased all but one block, leaving newly created
files unfragmented and decreasing the potential to recover old data. This
was most likely caused by all of the pages in these blocks being marked
as dirty, which prompted the garbage collection process.

B. FUTURE WORK

The recovery experiments were performed on clean devices with easily

identifiable text. The data stored in the spare area relates the data in flash pages with its

file. The spare area information allows the flash file systems and FTL to recreate the

files on demand. Research that leads to a better understanding of how the information in

the spare area identifies which file the data belongs will help in improving file carving

techniques and data recovery attempts.

While we were able to determine that one large file was sufficient to sanitize a

16MB simulated device, we were not able to verify the effects of blocks gone bad in

simulation. The FTL and flash file systems will mark blocks as bad after they can no

longer be programmed correctly. Bad blocks may contain residual data that cannot be

erased [37]. Additional research is needed to determine how the FTL and flash file

systems treat bad blocks and whether there is potential for residual data.

 71

The deletion of all the files stored on a full memory device in experiment eight

(the effects of heavy usage on fragmentation) caused a large garbage collection that hurt

the potential to recover residual data. Understanding when the FTL and flash file

systems conduct garbage collection will help the forensic investigator understand how

long residual data may exist on a seized flash memory device.

These experiments were conducted on a flash simulator because we did not have

access to raw flash memory, and it allowed us to impose control on the tests. The use of

the simulator hindered our ability to observe the effects of the FTL on flash memory.

Research on devices such as USB thumb drives and SD cards will be able to test our

proposed theories on residual data created by the FTL, while research on devices that use

flash file systems (such as the T-Mobile G1) will provide confidence that the experiments

translate well to the field.

 72

THIS PAGE INTENTIONALLY LEFT BLANK

 73

LIST OF REFERENCES

[1] L. van Someren, "IDEAS List," March 5, 2008 Available:
http://www.yaffs.net/ideas-list.

[2] E. Gal and S. Toledo, "Algorithms and data structures for flash memories," ACM
Computing Surveys, vol. 37, pp. 138–163, 2005.

[3] Bez, R., et al. "Introduction to Flash Memory." Proceedings of the IEEE 91.4
(2003): 489–502.

[4] J. Tyson, "How Flash Memory Works," 30 August 2000.
Available:http://electronics.howstuffworks.com/flash-memory.htm (2000).

[5] M. Bauer, R. Alexis, G. Atwood, B. Baltar, A. Fazio, K. Frary, M. Hensel, M.
Ishac, J. Javanifard, M. Landgraf, D. Leak, K. Loe, D. Mills, P. Ruby, R.
Rozman, S. Sweha, S. Talreja and K. Wojciechowski, "A multilevel-cell 32 Mb
flash memory," Solid-State Circuits Conference, 1995. Digest of Technical
Papers. 42nd ISSCC, 1995 IEEE International, pp. 132–133, 351, 1995.

[6] Roberts, D., Kgil, T., and Mudge, T. 2009. Integrating NAND flash devices onto
servers. Commun. ACM 52, 4 (Apr. 2009), 98–103.

[7] Cactus Technologies, "SLC vs. MLC NAND," Cactus Technologies Application
Note: CTAN010, 2008.

[8] B. Fulford. June 24 2002). Unsung hero. Forbes.com Available:
http://www.forbes.com/global/2002/0624/030.html

[9] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan and R. S.
Shenoy, "Overview of candidate device technologies for storage-class memory,"
IBM Journal of Research and Development, vol. 52, pp. 449–464, 2008.

[10] A. Tal, "NAND vs. NOR flash technology," February 2002 Available:
http://www2.electronicproducts.com/NAND_vs_NOR_flash_technology-article-
FEBMSY1-FEB2002.aspx.

[11] M. Breeuwsma, M. De Jongh, C. Klaver, R. van der Knijff and M. Roeloffs,
"Forensics data recovery from flash memory," Small Scale Device Forensics
Journal, vol. 1, pp. 1–17, 2007. Samsung Co., Ltd. NAND Flash Spare Area
Assignment Standard. (2005).

[12] S. Skorobogatov, "Data remnants in flash memory devices," in Cryptographic
Hardware and Embedded Systems-CHES 2005: 7th International Workshop,
Edinburgh, UK, August 29-September 1, 2005: Proceedings, 2005, pp. 339.

 74

[13] I. M. F. Breeuwsma, "Forensic imaging of embedded systems using JTAG
(boundary-scan)," Digital Investigation, vol. 3, pp. 32–42, 2006.

[14] Samsung Electronics Co., Ltd, “NAND Flash Spare Area Assignment Standard,”
April 27 2005 Available:
http://www.samsung.com/global/business/semiconductor/products/flash/downloa
ds/applicationnote/spare_assignment_standard.pdf

[15] Intel Corporation, "Understanding the Flash Translation Layer (FTL)
Specification," Application Note 648, Intel Corporation, December 1998.

[16] Microsoft Corporation, "File Systems and Data Store Changes," April 13, 2005
Available: http://msdn.microsoft.com/en-us/library/ms834188.aspx.

[17] Microsoft Corporation, "File Systems and Data Store Changes," April 13, 2005
Available: http://msdn.microsoft.com/en-us/library/ms899154.aspx.

[18] M-Systems, "TrueFFS 6.x Software Development Kit (SDK) Quick Reference
Guide," December 2003.

[19] D. Woodhouse, "Jffs2: The journalling flash file system, version 2," 2003-07–09
Available: http://sourceware.org/jffs2.

[20] Manning, C. "YAFFS Spec." (2002) Available: http://www.yaffs.net/yaffs-spec,
last accessed September 2009.

[21] J. Gettys, "OLPC keynote," in Free and Open Source Software Developers'
European Meeting, Université Libre de Bruxelles, Brussels, Belgium, 24 February
2007.

[22] D. Bem and E. Huebner, "Analysis of USB Flash Drives in a Virtual
Environment," Small Scale Digital Device Forensics Journal, vol. 1, 2007.

[23] A. Distefano and G. Me, "An overall assessment of Mobile Internal Acquisition
Tool," Digital Investigation, vol. 5, pp. 121–127, 2008.

[24] Roubos, D. Palmieri, L. Kachur, R. L. Herath, S. Herath, A. Constantino, D., "A
Study of Information Privacy and Data Sanitization Problems," CCSC: South
Central Conference, vol. 22, pp. 212, April 2007.

[25] R. Knijff, "Ten Good Reasons Why You Should Shift Focus to Small Scale
Digital Device Forensics," URL
http://www.dfrws.org/2007/proceedings/vanderknijff_pres.pdf , vol. 6, 2007, last
accessed September 2009.

[26] J. Luck and M. Stokes, "An Integrated Approach to Recovering Deleted Files
from NAND Flash Data".

http://msdn.microsoft.com/en-us/library/ms834188.aspx

 75

[27] B. Phillips, C. Schmidt and D. Kelly, "Recovering data from USB flash memory
sticks that have been damaged or electronically erased," in Proceedings of the 1st
International Conference on Forensic Applications and Techniques in
Telecommunications, Information, and Multimedia and Workshop Table of
Contents, 2008.

[28] P. Thomas and A. Morris, "An investigation into the development of an anti-
forensic tool to obscure USB flash drive device information on a windows XP
platform," in Digital Forensics and Incident Analysis, 2008. WDFIA'08. Third
International Annual Workshop on, 2008, pp. 60–66.

[29] P. Gutmann, "Secure deletion of data from magnetic and solid-state memory," in
Proceedings of the 6th Conference on USENIX Security Symposium, Focusing
on Applications of Cryptography-Volume 6, 1996.

[30] D. Feenberg, “Can Intelligence Agencies Read Overwritten Data? A response to
Gutmann,” National Bureau of Economic Research, 2003.
http://www.nber.org/sys-admin/overwritten-data-gutmann.html

[31] C. Wright, D. Kleiman and S. S. RS, "Overwriting hard drive data: The great
wiping controversy," in Proceedings of the 4th International Conference on
Information Systems Security, 2008, pp. 243–257.

[32] DoD Directive, "5220.22-M-Sup 1," National Industrial Security Program
Operating Manual, 1995.

[33] A. Ban, Flash File System, 1995.

[34] D. Shmidt, Technical Note: Trueffs Wear-Leveling Mechanism (Tn-Doc-017).

[35] A. Pal, H. T. Sencar and N. Memon, "Detecting file fragmentation point using
sequential hypothesis testing," Digital Investigation, vol. 5, pp. 2–13, 2008.

[36] J. Katcher, PostMark: A New File System Benchmark, 1997.
http://communities.netapp.com/servlet/JiveServlet/download/2609-
1551/Katcher97-postmark-netapp-tr3022.pdf , last accessed September 2009.

[37] S. L. Garfinkel and A. Shelat, "Remembrance of data passed: A study of disk
sanitization practices," IEEE Security & Privacy, pp. 17–27, 2003.

 76

THIS PAGE INTENTIONALLY LEFT BLANK

 77

APPENDIX

A. PYTHON CODE FOR EXPERIMENTS

1. YAFFS Experiment 1

#!/usr/bin/env python
import commands
commands.getstatusoutput('mount -t yaffs2 '+
'/dev/mtdblock0 /mnt/nandyaffs')
f = open('/mnt/nandyaffs/file1', 'wb')
f.write('NPS Beginning of a page')
f.write('A'*473)
f.write('End of a page NPS')
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment1Image')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

2. YAFFS Experiment 2

#!/usr/bin/env python
import commands, os
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
f = open('/mnt/nandyaffs/file1', 'wb')
f.write('NPS Beginning of a page')
f.write('A'*473)
f.write('End of a page NPS')
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment2Image')
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
os.rename('/mnt/nandyaffs/file1', '/mnt/nandyaffs/file2')
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment2ImageA')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

3. YAFFS Experiment 3

#!/usr/bin/env python
import commands
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
f = open('/mnt/nandyaffs/file1', 'wb')
f.write('NPS Beginning of a page')
f.write('A'*473)
f.write('End of a page NPS')
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment3Image')
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')

 78

commands.getstatusoutput('rm /mnt/nandyaffs/file1')
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment3ImageA')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

4. YAFFS Experiment 4

#!/usr/bin/env python
import commands
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
f = open('/mnt/nandyaffs/file1', 'wb')
f.write('NPS Beginning of a page')
f.write('A'*473)
f.write('End of a page NPS')
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment4Image')
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
commands.getstatusoutput('dd if=/mnt/Z of=/mnt/nandyaffs/file1 obs=50
ibs=50 seek=5 count=1 conv=notrunc') #/mnt/Z is a file containing 50
ASCII “Z”
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment4ImageA')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

5. YAFFS Experiment 5

#!/usr/bin/env python
import commands
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
f = open('/mnt/nandyaffs/file1', 'wb')
f.write('NPS Beginning of a page')
f.write('A'*473)
f.write('End of a page NPS')
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment7Image')
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0
/mnt/nandyaffs')
commands.getstatusoutput('dd if=/mnt/Z3 of=/mnt/nandyaffs/file1 obs=512
ibs=512 count=1 conv=notrunc') #/mnt/Z3 is a file containing 512 ASCII
“Z”
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment7ImageA')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

6. YAFFS Experiment 6

#!/usr/bin/env python
import commands
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
commands.getstatusoutput('umount /dev/mtdblock0')

 79

commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment5Virgin')
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
f = open('/mnt/nandyaffs/file1', 'wb')
f.write('NPS Beginning of a page')
f.write('A'*473)
f.write('End of a page NPS')
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
commands.getstatusoutput('rm /mnt/nandyaffs/file1')
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment5Image')
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
commands.getstatusoutput('dd if=/dev/zero of=/mnt/nandyaffs/file2 bs=512
count=32768')
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment5ImageAfterSanitization')
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
commands.getstatusoutput('rm /mnt/nandyaffs/file2')
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment5ImageAfterDeleteFile2')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

7. YAFFS Experiment 7

#!/usr/bin/env python
import commands, time
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment6Image1')
commands.getstatusoutput('md5sum -b '+
'/home/user/Desktop/yaffsexp/experiment6Image1 > '+
'/home/user/Desktop/yaffsexp/experiment6MD5Sums')
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
commands.getstatusoutput('sudo umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment6Image2')
commands.getstatusoutput('md5sum -b '+
'/home/user/Desktop/yaffsexp/experiment6Image2 >> '+
'/home/user/Desktop/yaffsexp/experiment6MD5Sums')
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
time.sleep(60)
commands.getstatusoutput('sudo umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment6Image3')
commands.getstatusoutput('md5sum -b '+
'/home/user/Desktop/yaffsexp/experiment6Image3 >> '+
'/home/user/Desktop/yaffsexp/experiment6MD5Sums')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

 80

8. YAFFS Experiment 8.1

#!/usr/bin/env python
import commands
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
commands.getstatusoutput('rm -rf /mnt/nandyaffs/26*')
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment8Image')
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
f = open('/mnt/nandyaffs/file1', 'wb')
for x in range(0,97):
 f.write('NPS Beginning of a page')
 f.write('A'*473)
 f.write('End of a page NPS')
f.write('NPS Beginning of a page')
f.write('A'*313)
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment8ImageA')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

9. YAFFS Experiment 8.2

#!/usr/bin/env python
import commands
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
commands.getstatusoutput('rm -rf /mnt/nandyaffs/*')
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment8aImage')
commands.getstatusoutput('mount -t yaffs2 /dev/mtdblock0 '+
'/mnt/nandyaffs')
f = open('/mnt/nandyaffs/file1', 'wb')
for x in range(0,97):
 f.write('NPS Beginning of a page')
 f.write('A'*473)
 f.write('End of a page NPS')
f.write('NPS Beginning of a page')
f.write('A'*313)
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/yaffsexp/experiment8aImageA')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

10. JFFS2 Experiment 1

#!/usr/bin/env python
import commands
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
f = open('/mnt/nandjffs/file1', 'wb')
f.write('NPS Beginning of a page')
f.write('A'*473)
f.write('End of a page NPS')

 81

f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment1Image')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

11. JFFS2 Experiment 2

#!/usr/bin/env python
import commands, os
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
f = open('/mnt/nandjffs/file1', 'wb')
f.write('NPS Beginning of a page')
f.write('A'*473)
f.write('End of a page NPS')
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment2Image')
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
os.rename('/mnt/nandjffs/file1', '/mnt/nandjffs/file2')
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment2ImageA')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

12. JFFS2 Experiment 3

#!/usr/bin/env python
import commands
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
f = open('/mnt/nandjffs/file1', 'wb')
f.write('NPS Beginning of a page')
f.write('A'*473)
f.write('End of a page NPS')
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment3Image')
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
commands.getstatusoutput('rm /mnt/nandjffs/file1')
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment3ImageA')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

13. JFFS2 Experiment 4

#!/usr/bin/env python
import commands
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
f = open('/mnt/nandjffs/file1', 'wb')
f.write('NPS Beginning of a page')
f.write('A'*473)
f.write('End of a page NPS')
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment4Image')
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')

 82

commands.getstatusoutput('dd if=/mnt/Z of=/mnt/nandjffs/file1 obs=50
ibs=50 seek=5 count=1 conv=notrunc') #/mnt/Z is a file containing 50
ASCII “Z”
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment4ImageA')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

14. JFFS2 Experiment 5

#!/usr/bin/env python
import commands
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
f = open('/mnt/nandjffs/file1', 'wb')
f.write('NPS Beginning of a page')
f.write('A'*473)
f.write('End of a page NPS')
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment7Image')
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
commands.getstatusoutput('dd if=/mnt/Z3 of=/mnt/nandjffs/file1 obs=512
ibs=512 count=1 conv=notrunc') #/mnt/Z3 is a file containing 512 ASCII
“Z”
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment7ImageA')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

15. JFFS2 Experiment 6

#!/usr/bin/env python
import commands
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment5Virgin')
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
f = open('/mnt/nandjffs/file1', 'wb')
f.write('NPS Beginning of a page')
f.write('A'*473)
f.write('End of a page NPS')
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
commands.getstatusoutput('rm /mnt/nandjffs/file1')
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment5Image')
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
commands.getstatusoutput('dd if=/dev/zero of=/mnt/nandjffs/file2 bs=512
count=32768')
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment5ImageAfterSanitization')
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
commands.getstatusoutput('rm /mnt/nandjffs/file2')
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment5ImageAfterDeleteFile2')

 83

commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

16. JFFS2 Experiment 7

#!/usr/bin/env python
import commands, time
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment6Image1')
commands.getstatusoutput('md5sum -b '+
'/home/user/Desktop/jffsexp/experiment6Image1 >
/home/user/Desktop/jffsexp/experiment6MD5Sums')
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
commands.getstatusoutput('sudo umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 >
/home/user/Desktop/jffsexp/experiment6Image2')
commands.getstatusoutput('md5sum -b '+
'/home/user/Desktop/jffsexp/experiment6Image2 >> '+
'/home/user/Desktop/jffsexp/experiment6MD5Sums')
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
time.sleep(60)
commands.getstatusoutput('sudo umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment6Image3')
commands.getstatusoutput('md5sum -b '+
'/home/user/Desktop/jffsexp/experiment6Image3 >> '+
'/home/user/Desktop/jffsexp/experiment6MD5Sums')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

17. JFFS2 Experiment 8.1

#!/usr/bin/env python
import commands
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
commands.getstatusoutput('rm -rf /mnt/nandjffs/26*')
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment8Image')
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
f = open('/mnt/nandjffs/file1', 'wb')
for x in range(0,97):
 f.write('NPS Beginning of a page')

f.write('A'*473)
 f.write('End of a page NPS')
f.write('NPS Beginning of a page')
f.write('A'*313)
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment8ImageA')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

18. JFFS2 Experiment 8.2

#!/usr/bin/env python
import commands
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
commands.getstatusoutput('rm -rf /mnt/nandjffs/*')

 84

commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment8aImage')
commands.getstatusoutput('mount -t jffs2 /dev/mtdblock0 /mnt/nandjffs')
f = open('/mnt/nandjffs/file1', 'wb')
for x in range(0,97):
 f.write('NPS Beginning of a page')

f.write('A'*473)
 f.write('End of a page NPS')
f.write('NPS Beginning of a page')
f.write('A'*313)
f.close()
commands.getstatusoutput('umount /dev/mtdblock0')
commands.getstatusoutput('nanddump /dev/mtd0 > '+
'/home/user/Desktop/jffsexp/experiment8aImageA')
commands.getstatusoutput('mtd_debug erase /dev/mtd0 0 16777216')

B. LINUX IMAGE README

This is the linux kernel image we used to run our experiments for the thesis "The Forensic Potential of
Flash Memory"

The username is: user

The password is: password

The kernel has been recompiled to include the YAFFS2 and JFFS2 with no compression and NAND
support

The following functionality has also been loaded:

- libncurses5 (needed to recompile the kernel)

- kernel-package (needed to recompile the kernel)

- linux source code 2.6.28 (needed to recompile the kernel)

- YAFFS2 (The source code is in the home directory)

- mtd-utils

- hexedit hex editor

- PostMark benchmarking program (The original tarball and the altered source code are in the
home directory)

- The mtd, jffs2, mtdchar and mtdblock modules have been loaded (If you restart the system, these
will need to be reloaded)

- A clean 16MB simulated flash device with 512 byte pages and 16Kb erase block on mtd0. (If
you restart the system, this simulated device will need to be recreated)

The python programs used to run the experiments are on the Desktop in the yaffsexp and jffsexp directories

The directories used to mount the simulated flash device have been created and are located at:

- /mnt/nandjffs

- /mnt/nandyaffs

If you find any sensitive/private information, please remove and contact us at: jaregan@nps.edu or
slgarfin@nps.edu

 85

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Fort Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Marine Corps Representative
 Naval Postgraduate School
 Monterey, California

4. Director, Training and Education, MCCDC, Code C46
 Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC
 Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
 Camp Pendleton, California

	I. INTRODUCTION
	A. MOTIVATION
	B. THEORY
	C. FLASH TRANSLATION LAYER
	D. FLASH FILE SYSTEMS

	II. BACKGROUND AND RELATED WORK
	A. BACKGROUND
	1. Physics of Flash Memory
	2. History and Trends of Flash
	3. NOR Versus NAND Flash
	4. Flash Endurance and Limitations
	5. Flash Memory Logical Structure
	6. Flash Specific Operations
	7. Access via the Joint Test Action Group (JTAG) Interface
	8. Wear Level Approach with the Flash Translation Layer
	9. Wear Level Approach with Flash File Systems

	B. PRIOR WORK
	1. Introduction
	2. Physical Acquisition
	3. Logical Acquisition
	4. Remnant Data
	5. Other

	III. OPPORTUNITES FOR RECOVERY
	A. RESIDUAL DATA AS A RESULT OF OUT OF PLACE WRITES
	1. Background
	2. FTL
	3. YAFFS
	4. JFFS
	5. JFFS2

	B. EFFECTS OF FRAGMENTATION ON DATA RECOVERY

	IV. RECOVERY EXPERIMENTS
	A. PREPARATION OF SYSTEM
	B. EXPERIMENTS
	1. Test the Ability to Write and Read from a Simulated NAND Device
	2. Effects of Renaming a File
	3. Effects of Deleting a File
	4. Effects of a Partial Overwrite
	5. Effects of a Complete Overwrite
	6. Is One File Big Enough to Sanitize?
	7. Background Processes Effect on Forensic Integrity
	8. The Effects of Heavy Usage on Fragmentation

	V. CONCLUSIONS AND FUTURE WORK
	A. CONCLUSIONS
	B. FUTURE WORK

	LIST OF REFERENCES
	APPENDIX
	A. PYTHON CODE FOR EXPERIMENTS
	1. YAFFS Experiment 1
	2. YAFFS Experiment 2
	3. YAFFS Experiment 3
	4. YAFFS Experiment 4
	5. YAFFS Experiment 5
	6. YAFFS Experiment 6
	7. YAFFS Experiment 7
	8. YAFFS Experiment 8.1
	9. YAFFS Experiment 8.2
	10. JFFS2 Experiment 1
	11. JFFS2 Experiment 2
	12. JFFS2 Experiment 3
	13. JFFS2 Experiment 4
	14. JFFS2 Experiment 5
	15. JFFS2 Experiment 6
	16. JFFS2 Experiment 7
	17. JFFS2 Experiment 8.1
	18. JFFS2 Experiment 8.2

	B. LINUX IMAGE README

	INITIAL DISTRIBUTION LIST

